
i

ALAGAPPA UNIVERSITY
(Accredited with ‘A+’ Grade by NAAC (with CGPA: 3.64) in the Third Cycle and Graded

as category - I University by MHRD-UGC)

(A State University Established by the Government of Tamilnadu)

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

Bachelor of Computer Applications

Second Year – Third Semester

10133

RELATIONAL DATABASE MANAGEMENT

SYSTEM (RDBMS)

Copy Right Reserved For Private Use only

ii

Author:

Dr. C.Balakrishnan

Assistant Professor

Alagappa Institute of Skill Development

Alagappa University,
Karaikudi. 630 003.

“The Copyright shall be vested with Alagappa University”

All rights reserved. No part of this publication which is material protected by this copyright notice

may be reproduced or transmitted or utilized or stored in any form or by any means now known or

hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording

or by any information storage or retrieval system, without prior written permission from the

Alagappa University, Karaikudi, Tamil Nadu.

Reviewer

Dr. P. Prabhu,

Assistant Professor of Computer Application,
Directorate of Distance Education,

Alagappa University,

Karaikudi. 630 003.

iii

RELATIONAL DATABASE MANAGEMENT SYSTEM

(RDBMS)

SYLLABI-BOOK MAPPING TABLE

 Syllabi

Mapping in Book

 BLOCK 1 : INTRODUCTION

UNIT I Data base System Applications, data base System VS

file System – View of Data – Data Abstraction –Instances

and Schemas – data Models – the ER Model
1-11

UNIT II Model : Relational Model – Other Models – Database

Languages – DDL – DML – database Access for

applications Programs – data base Users and

Administrator – Transaction Management – data base

System Structure – Storage Manager – the Query

Processor

12-22

UNIT III History of Data base Systems - Data base design and ER

diagrams – Beyond ER Design Entities, Attributes and

Entity sets – Relationships and Relationship sets –

Additional features of ER Model – Concept Design with

the ER Model – Conceptual Design for Large enterprises.

23-33

 BLOCK 2 : RELATIONAL MODEL

UNIT IV Introduction– Integrity Constraint Over relations –

Enforcing Integrity constraints – Querying relational data

– Logical data base Design – Introduction to Views –

Destroying / altering Tables and Views.

34-48

UNIT V Relational Algebra – Selection and projection set

operations – renaming – Joins – Division – Examples of

Algebra overviews
49-59

UNIT VI Relational calculus – Tuple relational Calculus – Domain

relational calculus – Expressive Power of Algebra and

calculus.
60-65

 BLOCK 3 : SQL QUERY

 UNIT VII Form of Basic SQL Query – Examples of Basic SQL

Queries – Introduction to Nested Queries – Correlated

Nested Queries Set – Comparison Operators –

Aggregative Operators – NULL values – Comparison

using Null values – Logical connectivity’s – AND, OR

and NOT – Impact on SQL Constructs – Outer Joins –

Disallowing NULL values – Complex Integrity

Constraints in SQL Triggers and Active Data bases.

Schema refinement

66-88

UNIT VIII Normal forms : Problems Caused by redundancy –

Decompositions – Problem related to decomposition –

reasoning about FDS – FIRST, SECOND, THIRD Normal

forms – BCNF

89-108

UNIT IX Join: Lossless join Decomposition – Dependency

preserving Decomposition – Schema refinement in Data

base Design – Multi valued Dependencies – FORTH

Normal Form.

109-116

iv

 BLOCK 4: TRANSACTION

UNIT X Introduction :Transaction Concept- Transaction State-

Implementation of Atomicity and Durability – Concurrent

– Executions – Serializability- Recoverability –

Implementation of Isolation – Testing for serializability

117-128

UNIT XI Protocols : Lock Based Protocols – Timestamp Based

Protocols- Validation- Based Protocols – Multiple

Granularity.
129-138

UNIT XII Recovery and Atomicity – Log – Based Recovery –

Recovery with Concurrent Transactions – Buffer

Management – Failure with loss of nonvolatile storage-

Advance Recovery systems- Remote Backup systems

139-154

 BLOCK 5 : STORAGE

UNIT XII Data on External Storage – File Organization and

Indexing – Cluster Indexes, Primary and Secondary

Indexes – Index data Structures – Hash Based Indexing –

Tree base Indexing – Comparison of File Organizations –

Indexes

155-165

UNIT IV Performance Tuning- Intuitions for tree Indexes –

Indexed Sequential Access Methods (ISAM) – B+ Trees:

A Dynamic Index Structure.
166-174

 NOTES

 5

CONTENTS

BLOCK I INTRODUCTION

UNIT I DATABASE SYSTEM APPLICATIONS 1-11

1.1 Introduction

1.2 Objectives

1.3 Introduction to Database Systems

1.3.1 Database Management System (DBMS)

1.3.2 Applications of Database Management System (DBMS)

1.4 Database System Vs file System

1.4.1 Problems with File System

1.4.2 Advantages of Database System

1.5 View of Data

1.6 Data Abstraction

1.7 Instances and Schemas

1.8 Data Models

1.9 The ER Model

1.10 Answers to Check Your Progress Questions

1.11 Summary

1.12 Key Words

1.13 Self-Assessment Questions and Exercises

1.14 Further Readings

UNIT – II MODEL 12-22

2.1 Introduction

2.2 Objectives

2.3 Relational Model

2.4 Database Languages

2.4.1 DDL

2.4.2 DML

2.5 Database Access for applications Programs

2.6 Data base Users and Administrator

2.7 Transaction Management

2.8 Data base System Structure

2.9 Storage Manager

2.10 The Query Processor

2.11 Answers to Check Your Progress Questions

2.12 Summary

2.13 Key Words

2.14 Self-Assessment Questions and Exercises

2.15 Further Readings

 NOTES

 6

UNIT – III HISTORY OF DATABASE SYSTEMS 23-33

3.1 Introduction

3.2 Objectives

3.3 Database design and ER diagrams

3.4 Beyond ER Design Entities

3.5 Attributes and Entity sets

3.6 Relationships and Relationship sets

3.7 Additional features of ER Model

3.8 Concept Design with the ER Model

3.9 Conceptual Design for Large enterprises

3.10 Answers to Check Your Progress Questions

3.11 Summary

3.12 Key Words

3.13 Self-Assessment Questions and Exercises

3.14 Further Readings

UNIT IV INTRODUCTINO TO RELATIONAL MODEL 34-48

4.1 Introduction

4.2 Objectives

4.3 Structure of Relational Model

4.4 Integrity Constraint over Relations

4.5 Enforcing Integrity constraints

4.6 Querying relational data

4.7 Logical Database Design

4.8 Introduction to Views

4.9 Destroying / altering Tables and Views

4.10 Answers to Check Your Progress Questions

4.11 Summary

UNIT V RELATONAL ALGEBRA 49-59

5.1 Introduction

5.2 Objectives

5.3 Introduction to Relational Algebra

5.4 Selection and projection set operations

5.5 Renaming

5.6 Joins

5.7 Division

5.8 Examples of Algebra overviews

5.9 Answers to Check Your Progress Questions

5.10 Summary

5.11Key Words

5.12 Self-Assessment Questions and Exercises

5.13 Further Readings

UNIT VI RELATIONAL CALCULUS 60-65

6.1 Introduction

6.2 Objectives

6.3 Relational Calculus

 NOTES

 7

6.4 Tuple Relational Calculus

6.5 Domain Relational Calculus

6.6 Expressive Power of Algebra and Calculus

6.7 Answers to Check Your Progress Questions

6.8 Summary

6.9 Key Words

6.10 Self-Assessment Questions and Exercises

6.11 Further Readings

UNIT VII FORMS OF BASIC SQL QUERY 66-88

7.1 Introduction

7.2 Objectives

7.3 Introduction to SQL Queries

7.4 Examples of Basic SQL Queries

7.5 Introduction to Nested Queries

7.6 Correlated Nested Queries Set

7.7 Comparison Operators

7.8 Aggregative Operators

7.9 NULL Values

7.10Comparision using NULL Values

7.11 Logical connectivity’s AND, OR and NOT

7.12 Outer Join

7.13 Disallowing NULL Values

7.14 PL/SQL

7.15 Complex Integrity Constraints in SQL Triggers and Active Databases

7.16 Answers to Check Your Progress Questions

7.17 Summary

7.18 Key Words

7.19 Self-Assessment Questions and Exercises

7.20 Further Readings

UNIT VIII NORMAL FORMS 89-108

8.1 Introduction

8.2 Objectives

8.3 Problems caused by redundancy

8.4 Decompositions

8.5 Problem related to decomposition

8.6 Reasoning about FDS

8.7 FIRST, SECOND, THIRD Normal Forms

8.8 BCNF

8.9 Answers to Check Your Progress Questions

8.10 Summary

8.11 Key Words

8.12 Self-Assessment Questions and Exercises

8.13 Further Readings

 NOTES

 8

UNIT – IX JOINS 109-116

9.1 Introduction

9.2 Objectives

9.3 Lossless Join Decomposition

9.4 Dependency preserving Decomposition

9.5 Schema refinement in Database Design

9.6 Multi valued Dependencies

9.7 FORTH Normal Form

9.8 Answers to Check Your Progress Questions

9.9 Summary

9.10 Key Words

9.11 Self-Assessment Questions and Exercises

9.12 Further Readings

UNIT X INTRODUCTION 117-128

10.1 Introduction

10.2 Objectives

10.3Transaction Concept

10.4 Transaction State

10.5 Implementation of Atomicity and Durability

10.6 Concurrent

10.7 Executions

10.8 Serializability

10.9 Recoverability

10.10 Implementation of Isolation

10.11 Testing for serializability

10.12 Answers to Check Your Progress Questions

10.13 Summary

10.14 Key Words

10.15 Self-Assessment Questions and Exercises

10.16 Further Readings

UNIT XI PROTOCOLS 129-138

11.1 Introduction

11.2 Objectives

11.3 Lock Based Protocols

11.4 Timestamp Based Protocols

11.5Validation

11.6 Multiple Granularity

11.7 Answers to Check Your Progress Questions

11.8 Summary

11.9 Key Words

11.10 Self-Assessment Questions and Exercises

11.11 Further Readings

 NOTES

 9

UNIT XII RECOVERY AND ATOMICITY 139-154

12.1 Introduction

12.2 Objectives

12.3 Log

12.4 Based Recovery

12.5 Recovery with Concurrent Transactions

12.6 Buffer Management

12.7 Failure with loss of non-volatile storage

12.8Advance Recovery systems

12.9 Remote Backup systems

12.10 Answers to Check Your Progress Questions

12.11 Summary

12.12 Key Words

12.13 Self-Assessment Questions and Exercises

12.14 Further Readings

UNIT XIII DATA ON EXTERNAL STORAGE 155-165

13.1 Introduction

13.2 Objectives

13.3 File Organization and Indexing

13.4 Cluster Indexes, Primary and Secondary Indexes

13.5 Index data Structures

13.6 Hash Based Indexing

13.7 Tree base Indexing

13.8 Comparison of File Organizations

13.9 Indexes

13.10 Answers to Check Your Progress Questions

13.11 Summary

13.12 Key Words

13.13 Self-Assessment Questions and Exercises

13.14 Further Readings

UNIT XIV PERFORMANCE TUNING 166-174

14.1 Introduction

14.2 Objectives

14.3 Intuitions for tree Indexes

14.4 Indexed Sequential Access Methods (ISAM)

14.5 A Dynamic Index Structure

14.6 Answers to Check Your Progress Questions

14.7 Summary

14.8 Key Words

14.9 Self-Assessment Questions and Exercises

14.10 Further Readings

Model Question Paper 175

 Introduction
NOTES

 Self-Instructional Material
 1

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

BLOCK – I

 INTRODUCTION

UNIT I DATABASE SYSTEM APPLICATIONS

Structure

1.1 Introduction

1.2 Objectives

1.3 Introduction to Database Systems

1.3.1 Database Management System (DBMS)

1.3.2 Applications of Database Management System (DBMS)

1.4 Database System Vs file System

1.4.1 Problems with File System

1.4.2 Advantages of Database System

1.5 View of Data

1.6 Data Abstraction

1.7 Instances and Schemas

1.8 Data Models

1.9 The ER Model

1.10 Answers to Check Your Progress Questions

1.11 Summary

1.12 Key Words

1.13 Self-Assessment Questions and Exercises

1.14 Further Readings

1.1 Introduction

Database is a logical collection of inter-related data relevant to an enterprise.

The Database Management System (DBMS) is a collection of interrelated

data and a set of programs to access those data. The DBMS is designed to

manage and maintain large amount of data in database. DBMS are widely

used in all application areas, where data are involved.

1.2 Objectives

This section gives an introduction about the:

 Basics of Database systems

 Fundamental concepts of DBMS

 Applications of DBMS

 Differences between File system and Database system

 Various Data models

Introduction

NOTES

Self-Instructional Material
2

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

1.3 Introduction to Database Systems

This section gives definitions of some preliminary concepts of RDBMS.

 Data - raw facts that can be recorded and that have implicit

meaning. For example, consider the names, register numbers, courses

(subjects) and marks secured for each course

 Datum - singular form of Data or unit of Data

 Information – processed data is called information. Actually data are

processes / interpreted to get some semantics

 Database – logical collection of inter-related data relevant to an

enterprise

 Database Management System (DBMS) is a collection of

interrelated data and a set of programs to access those data

1.3.1 Database Management System (DBMS)

 The primary goal of a DBMS is to provide a way to store and retrieve

database information that is both convenient and efficient. The DBMS is

important because without the existence of some kind of rules and regulations

it is not possible to maintain the database.

It may be required to select the particular attributes of a particular

table; the common attributes to create relationship between two tables; if a

new record has to be inserted or deleted then which tables should have to be

handled etc. These issues must be addressed by having some kind of rules to

follow in order to maintain the integrity of the database.

DBMS is designed to manage large collection of information.

Managing the data involves both defining structures for storage of information

and providing methodologies for the manipulation of information.

In addition, the database system need to ensure the safety of the

information stored, despite of system crashes or attempts at unauthorized

access. The system should have mechanisms to avoid possible anomalous

results, when data are shared.

1.3.2 Applications of Database Management System (DBMS):

A Database management system is a repository or a container for

collection of computerized data files. The overall purpose of DBMS is to

allow the users to define, store, retrieve and update the information contained

in the database on demand.

Some of the major areas of application are as follows:

1. Banking

2. Airlines

3. Universities

4. Manufacturing and selling

5. Human resources

6. Databases touch all aspects of our lives.

 Introduction
NOTES

 Self-Instructional Material
 3

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Enterprise Information

o Sales: For product, customer, purchase and information.

o Accounting: For payments, receipts, account balances, assets and

other accounting information.

o Human resources: For information about employees, salaries, payroll

taxes, and benefits, and for generation of paychecks.

o Manufacturing: For management of the supply chain and for tracking

production of items in factories, inventories of items in warehouses

and stores, and orders for items.

o Online retailers: For sales data noted above plus online order

tracking, generation of recommendation lists, and maintenance of

online product evaluations.

o Universities: For student information, course registrations, and marks

(in addition to standard enterprise information such as human

resources and accounting).

o Airlines: For reservations and schedule information. Airlines were

among the first to use databases in a geographically distributed

manner.

o Telecommunication: For keeping records of calls made, generating

monthly bills, maintaining balances on prepaid calling cards, and

storing information about the communication networks

Banking and Finance
o Banking: For customer information, accounts, loans, and banking

transactions.

o Credit card transactions: For purchases on credit cards and

generation of monthly statements.

o Finance: For storing information about holdings, sales, and purchases

of financial instruments such as stocks and bonds; also for storing

real-time market data to enable online trading by customers and

automated trading by the firm.

1.4 Database System Vs file System

1.4.1 Problems with File System

Prior to the usage of Database Management Systems (DBMSs), information

are stored and maintained in File systems. A file system is a way of

organizing information on a storage device like a computer hard drive.

Common file systems include NTFS, FAT, etc. This typical file-processing

system is supported by a conventional operating system. The system stores

permanent records in various files, and it needs different application programs

to extract records from, and add records to, the appropriate files.

Keeping organizational information in a file processing system has a number

of major problems:

o Data redundancy and inconsistency: Same information may be

duplicated in several places (files).

Introduction

NOTES

Self-Instructional Material
4

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

For example, if a student enrols for double major (say, fine arts and

mathematics) the basic details such as, address and telephone number

of that student may appear in two different files viz. records of

students of Fine Arts department and in the Mathematics department.

This redundancy leads to higher storage and access cost.

o Data inconsistency: Copies of the same data in different files don’t

have inter-connection to maintain consistency.

For example, an update of student address in Fine Arts Department

will not automatically change in the records of Mathematics

Department.

o Difficulty in accessing data: Conventional file-processing

environments do not allow needed data to be retrieved in a convenient

and efficient manner. Data-retrieval systems are not efficient in file

systems.

For example, if we wish to find out the names of all students of the

University who live within a particular city. It is very difficult to

retrieve that information, because the details of students are

maintained in different files. The files don’t have inter-relationships

to access the data across the files.

o Data isolation: In file system, the data are scattered across files, and

files may have different formats. Hence, the data in file system are

isolated. Developing application programs to retrieve those isolated

data is difficult.

o Integrity problems. The data values stored in the database must

satisfy certain types of consistency constraints.

For example, suppose the university maintains separate accounts for

each department about the grants given them. In case, the university

needs to ensure that the account balance of a department may never

goes below Rs. 1000. Developers enforce these constraints in the

system by adding appropriate code in the various application

programs. However, when new constraints are added, it is difficult to

change the programs to enforce them. The problem is compounded

when constraints involve several data items from different files.

o Atomicity problems: All the operations on data must be atomic – that

is, it must happen in its entirety or not at all. It is difficult to ensure

atomicity in a conventional file-processing system.

o Concurrent-access anomalies: To improve the overall performance

of the system and faster response, many systems allow multiple users

to update the data simultaneously. Indeed, today, the largest Internet

retailers may have millions of accesses per day to their data by

shoppers. In such an environment, interaction of concurrent updates is

possible and may result in inconsistent data.

o Security problems. Not every user of the database system should be

able to access all the data.

 Introduction
NOTES

 Self-Instructional Material
 5

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

For example, in a university, staff of finance section should be

permitted to see only that part of the database that has financial

information. They do not need access to information about marks of

the students. Enforcing such security constraints is difficult in file

system.

These difficulties, among others, prompted the development of

database systems.

1.4.2 Advantages of Database Systems

o Controlling of Redundancy: Data redundancy refers to the

duplication of data (i.e storing same data multiple times). In a

database system, by having a centralized database and centralized

control of data by the DBA the unnecessary duplication of data is

avoided. It also eliminates the extra time for processing the large

volume of data. It results in saving the storage space.

o Improved Data Sharing: DBMS allows a user to share the data in

any number of application programs.

o Data Integrity: Integrity means that the data in the database is

accurate. Centralized control of the data helps in permitting the

administrator to define integrity constraints to the data in the

database. For example: in student database, we can enforce integrity

that it must accept the students only from Tamil Nadu state for the

admission under Distance Education mode.

o Security: Having complete authority over the operational data,

enables the DBA in ensuring that the only mean of access to the

database is through proper channels. The DBA can define

authorization checks to be carried out whenever access to sensitive

data is attempted.

o Data Consistency: By eliminating data redundancy, we greatly

reduce the opportunities for inconsistency. For example: is a

customer address is stored only once, we cannot have disagreement

on the stored values. Also updating data values is greatly simplified

when each value is stored in one place only. Finally, we avoid the

wasted storage that results from redundant data storage.

o Efficient Data Access : In a database system, the data is managed by

the DBMS and all access to the data is through the DBMS providing

a key to effective data processing

o Enforcements of Standards: With the centralized of data, DBA can

establish and enforce the data standards which may include the

naming conventions, data quality standards etc.

o Data Independence: In a database system, the database management

system provides the interface between the application programs and

the data. When changes are made to the data representation, the

meta-data obtained by the DBMS is changed but the DBMS is

continues to provide the data to application program in the

Introduction

NOTES

Self-Instructional Material
6

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

previously used way. The DBMs handles the task of transformation

of data wherever necessary.

o Reduced Application Development and Maintenance Time :

DBMS supports many important functions that are common to many

applications, accessing data stored in the DBMS, which facilitates the

quick development of application

The following table 1.1 illustrates the comparison between Database Systems

and File Systems:

Table 1.1 Database Systems Vs File Systems

Database Systems File Systems

Multi-user access It does not support multi-user access

Design to fulfill the need for small

and large businesses

It is only limited to smaller DBMS

system.

Remove redundancy and Integrity Redundancy and Integrity issues

Expensive. But in the long term Total

Cost of Ownership is cheap

It's cheaper

Easy to implement complicated

transactions

No support for complicated

transactions

1.5 View of Data

As it is already said, the DBMS is a collection of interrelated data and

a set of programs that allow users to access and modify these data. A major

purpose of a database system is to provide users with an abstract view of the

data. That is, the system hides certain details of how the data are stored and

maintained.

1.6 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need

for efficiency has led designers to use complex data structures to represent

data in the database. Since many database-system users are not

computer trained, developers hide the complexity from users through several

levels of abstraction, to simplify users’ interactions with the system. The

following figure 1.1 depicts the three levels of abstraction of data in DBMS:

Figure 1.1 Levels of Abstraction in a DBMS

 Introduction
NOTES

 Self-Instructional Material
 7

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

• Physical level (or Internal View / Schema): The lowest level of

abstraction describes how the data are actually stored. The physical

level describes complex low-level data structures in detail.

• Logical level (or Conceptual View / Schema): The next-higher level

of abstraction describes what data are stored in the database, and what

relationships exist among those data. The logical level thus describes

the entire database in terms of a small number of relatively simple

structures. Although implementation of the simple structures at the

logical level may involve complex physical-level structures, the user

of the logical level does not need to be aware of this complexity. This

is referred to as physical data independence. Database

administrators, who must decide what information to keep in the

database, use the logical level of abstraction.

• View level (or External View / Schema): The highest level of

abstraction describes only part of the entire database. Even though the

logical level uses simpler structures, complexity remains because of

the variety of information stored in a large database. Many users of

the database system do not need all this information;

instead, they need to access only a part of the database. The view

level of abstraction exists to simplify their interaction with the system.

The system may provide many views for the same database.

1.7 Instances and Schemas

• Databases change over time as information is inserted and deleted.

The collection of information stored in the database at a particular

moment is called an instance of the database.

• The overall design of the database is called the database schema.

• Schemas are changed infrequently, if at all. The concept of database

schemas and instances can be understood by analogy to a program

written in a programming language.

• A database schema corresponds to the variable declarations (along

with associated type definitions) in a program. Each variable has a

particular value at a given instant. The values of the variables in a

program at a point in time correspond to an instance of a database

schema. Database systems have several schemas, partitioned

according to the levels of abstraction.

• The physical schema describes the database design at the physical

level, while the logical schema describes the database design at the

logical level.

• A database may also have several schemas at the view level,

sometimes called subschemas, which describe different views of the

database. Of these, the logical schema is by far the most important, in

terms of its effect on application programs, since programmers

construct applications by using the logical schema. The physical

schema is hidden beneath the logical schema, and can usually be

changed easily without affecting application programs.

Application programs are said to exhibit physical data independence

if they do not depend on the physical schema, and thus need not be

rewritten if the physical schema changes

Introduction

NOTES

Self-Instructional Material
8

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

186 Data Models

Data model is a collection of conceptual tools for describing data,

data relationships, data semantics, and consistency constraints. A data model

provides a way to describe the design of a database at the physical, logical,

and view levels.

Data Models are fundamental entities to introduce abstraction in a

DBMS. Data models define how data is connected to each other and how they

are processed and stored inside the system.

The Data models are as follows:

• Earlier, the Network data model and Hierarchical data model are

used. Due to its complexity, both are not used in the present scenario.

• Then comes the Entity-Relationship Model. The entity-relationship

(E-R) data model uses a collection of basic objects, called

entities, and relationships among these objects. An entity is a “thing”

or “object” in the real world that is distinguishable from other objects.

The entity relationship model is widely used in database design.

• Relational Model. The relational model uses a collection of tables to

represent both data and the relationships among those data. Each table

has multiple columns, and each column has a unique name. Tables

are also known as relations.

• Object-Based Data Model. Object-oriented programming (especially

in Java, C++, or C#) has become the dominant software-development

methodology. This led to the development of an object-oriented data

model that can be seen as extending the E-R model with notions of

encapsulation, methods (functions), and object identity. The object-

relational data model combines features of the object-oriented data

model and relational data model.

• Semi-structured Data Model. The semi-structured data model

permits the specification of data where individual data items of the

same type may have different sets of attributes. This is in contrast to

the data models mentioned earlier, where every data item of a

particular type must have the same set of attributes. The

Extensible Markup Language (XML) is widely used to represent

semi-structured data.

Check Your Progress

1. What is meant by Data?

2. Which one is useful, whether File Systems or Database Systems to

main the data effectively?

3. What are the data models are not very much practiced in current

DBMS tools?

 Introduction
NOTES

 Self-Instructional Material
 9

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

1.9 The ER Model

Entity-Relationship (ER) Model is a notion based model. It denotes the real-

world entities and relationships among them. To formulate real-world

scenario into the database model, the ER Model is used to create entity set,

relationship set, general attributes and constraints.

ER Model is best used for the conceptual design of a database.

ER Model is based on −

 Entities and their attributes.

 Relationships among entities.

These concepts are explained in the following figure 1.2:

Figure 1.2 E-R Model

 Entity − an entity in an ER Model is a real-world entity having

properties called attributes. Every attribute is defined by its set of

values called domain. For example, in a school database, a student is

considered as an entity. Student has various attributes like name, age,

class, etc.

 Relationship − the logical association among entities is

called relationship. Relationships are mapped with entities in various

ways. Mapping cardinalities define the number of association between

two entities.

Mapping cardinalities −

o one to one

o one to many

o many to one

o many to many

1.10 Answers to Check Your Progress Questions

1. Raw fact is said to be Data

2. Because of its features such as, controlling redundancy, maintaining

consistency, data independence, security, etc. the Database Systems

are very much useful over File systems for maintaining data.

3. Due to its complexity in maintaining data, the Network data model

and Hierarchical data model are not very much practiced.

Introduction

NOTES

Self-Instructional Material
10

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

1.11 Summary

 Raw facts that can be recorded and that have implicit

meaning are called Data.

 Processed data is called information.

 Database is a logical collection of inter-related data relevant to an

enterprise

 Database Management System (DBMS) is a collection of interrelated

data and a set of programs to access those data

 A Database management system is a repository or a container for

collection of computerized data files.

 To simplify users’ interactions with the system, the DBMS has three

levels of abstraction, physical level, logical level and view level

 The collection of information stored in the database at a particular

moment is called an instance of the database.

 The overall design of the database is called the database schema.

 Data model is a collection of conceptual tools for describing data,

data relationships, data semantics, and consistency constraints.

 A data model provides a way to describe the design of a database at

the physical, logical, and view levels.

1.12 Keywords

 Data is a raw fact. Processed data are called information.

 Collection of inter-related data is said to be Database.

 Set of procedures to access and manage the data in Database are

called Database Management Systems (DBMS).

 Instance is the collection of information stored in the database at a

particular moment.

 The relational model uses a collection of tables to represent both data

and the relationships among those data.

 Data model is a collection of conceptual tools.

 Introduction
NOTES

 Self-Instructional Material
 11

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

1.13 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Data

2. What is meant by Database?

3. What are the data models?

4. What is a schema?

5. What is an entity?

Long Answer Questions:

1. Compare the features of File Systems and Database Systems.

2. Describe the characteristics of various Data models.

3. Write short-notes on the following:

a. Instances

b. View of Data

c. Data Abstraction

d. E-R model

1.14 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011.

 Database Models

NOTES

Self-Instructional Material
12

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

UNIT II DATABASE MODELS

Structure

2.1 Introduction

2.2 Objectives

2.3 Relational Model

2.4 Database Languages

2.4.1 DDL

2.4.2 DML

2.5 Database Access for applications Programs

2.6 Database Users and Administrator

2.7 Transaction Management

2.8 Data base System Structure

2.9 Storage Manager

2.10 The Query Processor

2.11 Answers to Check Your Progress Questions

2.12 Summary

2.13 Key Words

2.14 Self-Assessment Questions and Exercises

2.15 Further Readings

2.1 Introduction

Data models define the logical structure of a database. Data Models are

fundamental entities to introduce abstraction in a DBMS. Data models define

how data is connected to each other and how they are processed and stored

inside the system. A Database model defines the logical design and structure

of a database and defines how data will be stored, accessed and updated in a

database management system. While the Relational Model is the most widely

used database model, there are other models too:

 Hierarchical Model

 Network Model

 Entity-relationship Model

 Relational Model

2.2 Objectives

This chapter delivers the fundamentals about:

 Data models

 Principles of Relational model

 Database Languages

 Components of Database Architecture

 Database Models
NOTES

 Self-Instructional Material
 13

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

2.3 Relational Model

The relational model uses a collection of tables to represent both data

and the relationships among those data. Each table has multiple columns, and

each column has a unique name.

The data is arranged in a relation which is visually represented in a

two dimensional table. The data is inserted into the table in the form of tuples

(which are nothing but rows). A tuple is formed by one or more than one

attributes, which are used as basic building blocks in the formation of various

expressions that are used to derive meaningful information. There can be any

number of tuples in the table, but all the tuple contain fixed and same

attributes with varying values.

The relational model is implemented in database where a relation is

represented by a table, a tuple is represented by a row, an attribute is

represented by a column of the table, attribute name is the name of the column

such as ‘identifier’, ‘name’, ‘city’ etc., attribute value contains the value for

column in the row. Constraints are applied to the table and form the logical

schema.

In order to facilitate the selection of a particular row/tuple from the

table, the attributes i.e. column names are used, and to expedite the selection

of the rows some fields are defined uniquely to use them as indexes, this helps

in searching the required data as fast as possible.

All the relational algebra operations, such as Select, Intersection,

Product, Union, Difference, Project, Join, Division, Merge etc. can also be

performed on the Relational Database Model. Operations on the Relational

Database Model are facilitated with the help of different conditional

expressions, various key attributes, pre-defined constraints etc.

Figure 2.1 Relational Model

The main highlights of this model are −

 Data is stored in tables called relations.

 Relations can be normalized.

 In normalized relations, values saved are atomic values.

 Database Models

NOTES

Self-Instructional Material
14

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

 Each row in a relation contains a unique value.

 Each column in a relation contains values from a same domain.

2.4 Database Languages

A database system provides a Data-Definition Language (DDL) to

specify the database schema and a data-manipulation language to express

database queries and updates. In practice, the data definition and data-

manipulation languages are not two separate languages; instead they simply

form parts of a single database language, such as the widely used SQL

language.

2.4.1 Data-Definition Language (DDL)

A database schema is specified by a set of definitions expressed by a

special language called a Data-Definition Language (DDL). The DDL is

also used to specify additional properties of the data. We specify the storage

structure and access methods used by the database system by a set of

statements in a special type of DDL called a data storage and definition

language. These statements define the implementation details of the database

schemas, which are usually hidden from the users.

The data values stored in the database must satisfy certain

consistency constraints. For example, suppose the university requires that the

account balance of a department must never be negative. The DDL provides

facilities to specify such constraints. The database system checks these

constraints every time the database is updated. In general, a constraint can be

an arbitrary predicate pertaining to the database. However, arbitrary predicates

may be costly to test. Thus, database systems implement integrity constraints

that can be tested with minimal overhead.

 Domain Constraints. A domain of possible values must be

associated with every attribute (for example, integer types, character

types, date/time types). Declaring an attribute to be of a particular

domain acts as a constraint on the values that it can take. Domain

constraints are the most elementary form of integrity

constraint. They are tested easily by the system whenever a new data

item is entered into the database.

 Referential Integrity. There are cases where we wish to ensure that a

value that appears in one relation for a given set of attributes also

appears in a certain set of attributes in another relation (referential

integrity). For example, the department listed for each course must be

one that actually exists. More precisely, the dept name

value in a course record must appear in the dept name attribute of

some record of the department relation. Database modifications can

cause violations of referential integrity. When a referential-integrity

constraint is violated, the normal procedure is to reject the action that

caused the violation.

 Assertions. An assertion is any condition that the database must

always satisfy. Domain constraints and referential-integrity

constraints are special forms of assertions. However, there are many

constraints that we cannot express by using only these special forms.

 Database Models
NOTES

 Self-Instructional Material
 15

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

For example, “Every department must have at least five

courses offered every semester” must be expressed as an assertion.

When an assertion is created, the system tests it for validity. If the

assertion is valid, then any future modification to the database is

allowed only if it does not cause that assertion to be violated.

 Authorization. We may want to differentiate among the users as far

as the type of access they are permitted

on various data values in the database. These differentiations are

expressed in terms of authorization, the most common being: read

authorization, which allows reading, but not modification, of data;

insert authorization, which allows insertion of new data, but not

modification of existing data; update authorization, which allows

modification, but not deletion, of data; and delete authorization,

which allows deletion of data. We may assign the user all, none, or a

combination of these types of authorization. The DDL, just like any

other programming language, gets as input some instructions

(statements) and generates some output. The output of the DDL is

placed in the data dictionary, which contains metadata—that

is, data about data. The data dictionary is considered to be a special

type of table that can only be accessed and updated by the database

system itself (not a regular user). The database system consults the

data dictionary before reading or modifying actual data

2.4.2 Data- Manipulation Language (DML)

 A data-manipulation language (DML) is a language that enables

users to access or manipulate data as organized by the appropriate data model.

The types of access are:

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information from the database

• Modification of information stored in the database

There are basically two types:

• Procedural DMLs require a user to specify what data are needed and

how to get those data.

• Declarative DMLs (also referred to as nonprocedural DMLs)

require a user to specify what data are needed

without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are

procedural DMLs. However, since a user does not have to specify how to get

the data, the database system has to figure out an efficient means of accessing

data. A query is a statement requesting the retrieval of information. The

portion of a DML that involves information retrieval is called a query

language. Although technically incorrect, it is common practice to use the

terms query language and data-manipulation language synonymously.

There are a number of database query languages in use, either

commercially or experimentally.

The levels of abstraction apply not only to defining or structuring

data, but also to manipulating data. At the physical level, we must define

 Database Models

NOTES

Self-Instructional Material
16

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

algorithms that allow efficient access to data. At higher levels of abstraction,

we emphasize ease of use. The goal is to allow humans to interact efficiently

with the system. The query processor component of the database system

translates DML queries into sequences of actions at the physical

level of the database system.

2.5 Database Access for applications Programs

A database application is a computer program whose primary

purpose is entering and retrieving information from a computerized database.

When a user wants to retrieve data from the Database, the database

management system is acts a bridge between the application program, (that

determines what data are needed and how they are processed), and

the operating system of the computer, which is responsible for placing data on

the magnetic storage devices.

To retrieve data from the database, the following operations are

performed internally:

• A user issues an access request, using some application program or

data manipulation language.

• The application program determines what data are needed and

communicates the need to the database management system.

• The DBMS intercepts the request and interprets it

• The DBMS inspects, in turn, the external schema, the

external/conceptual mapping, the conceptual schema, the

conceptually internal mapping, and storage structure definition.

• The data base management system instructs the operating system to

locate and retrieve the data from the specific location on the magnetic

disk (or whatever device it is stored on).

• A copy of the data is given to the application program for processing.

There are also special types of programming languages that combine

imperative control structures (for example, for loops, while loops and if-then-

else statements) with statements of the data manipulation language.

These languages, sometimes called fourth-generation languages, often

include special features to facilitate the generation of forms and the display of

data on the screen. Most major commercial database systems include a

fourth generation language.

2.6 Database Users and Administrator

A primary goal of a database system is to retrieve information from

and store new information in the database. People who work with a database

can be categorized as database users or database administrators.

 There are four different types of database-system users, differentiated

by the way they expect to interact with the system. Different types of user

interfaces have been designed for the different types of users.

 Database Models
NOTES

 Self-Instructional Material
 17

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

• Naive users are unsophisticated users who interact with the system by

invoking one of the application programs that have been written

previously.

• Application programmers are computer professionals who write

application programs. Application programmers can choose from

many tools to develop user interfaces. Rapid application

development (RAD) tools are tools that enable an application

programmer to construct forms and reports without writing a

program.

• Sophisticated users interact with the system without writing

programs. Instead, they form their requests in a

database query language. They submit each such query to a query

processor, whose function is to break down DML statements into

instructions that the storage manager understands. Analysts who

submit queries to explore data in the database fall in this category.

Online analytical processing (OLAP) tools simplify analysts’ tasks

by letting them view summaries of data in different ways. For

instance, an analyst can see total sales by region (for example, North,

South, East, and West), or by product, or by a combination of region

and product (that is, total sales of each product in each region). The

tools also permit the analyst to select specific regions, look at data in

more detail (for example, sales by city within a region) or look at the

data in less detail (for example, aggregate products together by

category). Another class of tools for analysts is data mining tools,

which help them find certain kinds of patterns in data.

• Specialized users are sophisticated users who write specialized

database applications that do not fit into the traditional data-

processing framework. Among these applications are computer-aided

design systems, knowledge base and expert systems, systems

that store data with complex data types (for example, graphics data

and audio data), and environment-modelling systems.

2.7 Transaction Management

A transaction is a collection of operations that performs a single logical

function in a database application. Each transaction is a unit of both atomicity and

consistency. Thus, we require that transactions do not violate any database-

consistency constraints. That is, if the database was consistent when a transaction

started, the database must be consistent when the transaction successfully terminates.

Transaction management ensures that the database remains in a consistent

(correct) state despite system failures (e.g., power failures and operating system

crashes) and transaction failures.

2.8 Database System Structure

The following Figure 2.2 depicts the architecture of a database

system. The various components shown in the figure 2.2 gives an overview of

the components of a database system and the connections among them.

 Database Models

NOTES

Self-Instructional Material
18

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

The architecture of a database system is greatly influenced by the

underlying computer system on which the database system runs. Database

systems can be centralized, or client-server, where one server machine

executes work on behalf of multiple client machines. Database systems can

also be designed to exploit parallel computer architectures. Distributed

databases span multiple geographically separated machines.

A database system is partitioned into modules that deal with each of

the responsibilities of the overall system. The functional components of a

database system can be broadly divided into the storage manager and

the query processor components. The storage manager is important because

databases typically require a large amount of storage space. The query

processor is important because it helps the database system simplify

and facilitate access to data.

It is the job of the database system to translate updates and queries

written in a nonprocedural language, at the logical level, into an efficient

sequence of operations at the physical level.

Figure 2.2 Database System Architecture

Database applications are usually partitioned into two or three parts,

as in Figure 2.3.

 Database Models
NOTES

 Self-Instructional Material
 19

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

In two-tier architecture, the application resides at the client machine,

where it invokes database system functionality at the server

machine through query language statements. Application program interface

standards like ODBC and JDBC are used for interaction between the client

and the server.

In contrast, in three-tier architecture, the client machine acts as merely

a front end and does not contain any direct database calls. Instead, the client

end communicates with an application server, usually through a forms

interface. The application server in turn communicates with a database system

to access data. The business logic of the application, which says what actions

to carry out under what conditions, is embedded in the application server,

instead of being distributed across multiple clients.

Three-tier applications are more appropriate for large applications,

and for applications that run on the World Wide Web (WWW).

a). Two-tier Architecture b). Three-tier Architecture

Figure 2.3 Two-tier and Three-tier Architectures

2.9 Storage Manager

A storage manager is a program module that provides the interface

between the low-level data stored in the database and the application

programs and queries submitted to the system. The storage manager is

responsible for the interaction with the file manager. The raw data are stored

on the disk using the file system, which is usually provided by a conventional

operating system. The storage manager translates the various DML statements

into low-level file-system commands.

 Database Models

NOTES

Self-Instructional Material
20

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Thus, the storage manager is responsible for storing, retrieving, and

updating data in the database. The storage manager components include:

• Authorization and integrity manager, which tests for the

satisfaction of integrity constraints and checks the authority of users

to access data.

• Transaction manager, which ensures that the database remains in a

consistent (correct) state despite system failures, and that concurrent

transaction executions proceed without conflicting.

• File manager, which manages the allocation of space on disk storage

and the data structures used to represent information stored on disk.

• Buffer manager, which is responsible for fetching data from disk

storage into main memory, and deciding what data to cache in main

memory. The buffer manager is a critical part of the database system,

since it enables the database to handle data sizes that are much larger

than the size of main memory.

2.10 The Query Processor

The query processor components include

 DDL interpreter, which interprets DDL statements and records the

definitions in the data dictionary.

 DML compiler, which translates DML statements in a query language

into an evaluation plan consisting of low-level instructions that the

query evaluation engine understands.

A query can usually be translated into any of a number of alternative

evaluation plans that all give the same result. The DML compiler also

performs query optimization, that is, it picks the lowest cost evaluation plan

from among the alternatives. Query evaluation engine, which executes low-

level instructions generated by the DML compiler.

2.11 Answers to Check Your Progress Questions

1. The data is arranged in a relation which is visually represented in a two

dimensional table.

2. A data-manipulation language (DML) is a language that enables users

to access or manipulate data as organized by the appropriate data model.

Check Your Progress

1. How data are arranged in Relational model?

2. Define: DML.

3. What is meant by Transaction?

 Database Models
NOTES

 Self-Instructional Material
 21

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

3. A transaction is a collection of operations that performs a single logical

function in a database application.

2.12 Summary

 The relational model uses a collection of tables to represent both data

and the relationships among those data.

 The data is arranged in a relation which is visually represented in a

two dimensional table. The data is inserted into the table in the form

of tuples (which are nothing but rows)

 A Data-Definition Language (DDL) to specify the database schema.

 A Data-Manipulation Language (DML) enables users to access or

manipulate data.

 Procedural DMLs and Declarative DMLs are the two types of DML

 A query is a statement requesting the retrieval of information.

 The Naive users, Application programmers, Sophisticated users and

the Specialized users are the types of users of Database Systems

 A transaction is a collection of operations that performs a single

logical function in a database application

 In two-tier architecture, the application resides at the client machine

invokes database system functionality at the server

machine through query language statements.

 In three-tier architecture, the client machine acts as merely a front end

and does not contain any direct database calls. Instead, the client end

communicates with an application server, usually through a forms

interface.

 A storage manager is a program module that provides the interface

between the low-level data stored in the database and the application

programs and queries submitted to the system.

 A query processor consists of DML interpreter and DML compiler

2.13 Keywords

 Relational model is said to be a collection of tables

 Tables contains tuples (rows) and attributes (columns)

 DBMS consists of languages called DDL and DML

 A database application is a computer program whose primary

purpose is entering and retrieving information from a

computerized database.

 Database Models

NOTES

Self-Instructional Material
22

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

 A storage manager is an interface between the low-level data and the

application programs and queries.

 A query can usually be translated into any of a number of alternative

evaluation plans that all give the same result.

2.14 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Relational model

2. What are the two types of DML?

3. Who is Naïve user?

4. What are the functional components of Database System?

5. What is a query?

Long Answer Questions:

1. List and explain the constraints applied to the Tables.

2. Describe the components of a Database Architecture.

3. Write short-notes on the following:

a. Storage manager

b. Transaction manager

c. Query processor

d. Three-tier architecture

2.15 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011.

 History of Database Systems
NOTES

 Self-Instructional Material
 23

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

UNIT III HISTORY OF DATABASE SYSTEMS

Structure

3.1 Introduction

3.2 Objectives

3.3 Database design and ER diagrams

3.4 Beyond ER Design Entities, Attributes and Entity sets

3.5 Relationships and Relationship sets

3.6 Additional features of ER Model

3.7 Concept Design with the ER Model

3.8 Conceptual Design for Large enterprises

3.9 Answers to Check Your Progress Questions

3.10 Summary

3.11 Key Words

3.12 Self-Assessment Questions and Exercises

3.13 Further Readings

3.1 Introduction

The ER or (Entity Relational Model) is a high-level conceptual data model

diagram. Entity-Relation model is based on the notion of real-world entities

and the relationship between them. ER modeling helps you to analyze data

requirements systematically to produce a well-designed database. An Entity–

relationship model (ER model) describes the structure of a database with the

help of a diagram, which is known as Entity Relationship Diagram (ER

Diagram). An ER model is a design or blueprint of a database that can later

be implemented as a database. The main components of E-R model are: entity

set and relationship set.

3.2 Objectives

This chapter gives introduction to:

 ER Model of Database

 Elements of ER diagrams

 Database design and ER diagrams

3.3 Database design and ER diagrams

Database Design Techniques

The database design process aims to create database structures that will

efficiently store and manage data. Database design has four phases:

requirements analysis, conceptual design, logical design, and physical design.

History of Database systems

NOTES

Self-Instructional Material
24

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

There are two techniques involved in designing a Database:

1. ER Modeling (Top down Approach)

2. Normalization (Bottom Up approach)

Top-down approach Vs Bottom-up Approach

Top-down approaches stress an initial focus on knowledge of higher-level

constructs, such as identification of populations and collections of things and

entity types, membership rules, and relationships between such populations.

Adoption of a top-down approach will generally start with a set of high-level

requirements, such as a narrative. These requirements start a process of

identifying the types of things needed to represent data with as well as the

attributes of those things, which may become attributes in tables. In the top-

down database design tradition, the database analyst initially attempts to

develop a conceptual data model by identifying highly abstracted data objects

(things/entity types) that may exist within the domain—i.e., the analyst

attempts to construct a domain ontology. Techniques applied by the analyst

typically include making observations, conducting interviews, and other data

collection strategies.

Usually, inspiration for the data model also comes from a close analysis of the

domain business rules. In addition, structural properties, such as relationships

between entity types and relationship cardinality are identified. In many cases,

an initial conceptual data model is drafted that does not include all data

attributes. Once a satisfactory conceptual data model has been developed, the

database analyst may turn his/her attention to the technological platform on

which the final data repository will be deployed (i.e., development of the

logical data schema). Development of the logical schema requires the

database analyst to consider any mapping issues between the structures on the

ER (Entity-Relationship) model and chosen persistent mechanism.

Bottom-up approaches view database design as proceeding from an initial

analysis of lower-level conceptual units, such as attributes and functional

dependencies and then moving towards an acceptable logical data model

through logical groupings of associated attributes. In other words, bottom-up

approaches tend to view the task of population identification as a process of

generalizing object identity from examples of structural dependencies (e.g.,

bundling/categorizing attributes that appear to co-occur). Input into a bottom-

up approach, for example, could be views of data, such as screen shots or

reports (printouts), or patterns of co-occurring attribute values identified

within large datasets. A well-known approach to database design that can be

used as a bottom-up approach is Normalization.

3.4 Beyond ER Design Entities, Attributes and Entity sets

The entity-relationship (E-R) data model was developed to facilitate

database design by allowing specification of an enterprise schema that

represents the overall logical structure of a database.

The E-R model is very useful in mapping the meanings and interactions of

real-world enterprises onto a conceptual schema. Because of this usefulness,

many database-design tools draw on concepts from the E-R model. The E-R

 History of Database Systems
NOTES

 Self-Instructional Material
 25

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

data model employs three basic concepts: entity sets, relationship sets, and

attributes, which we study first.

Entity Sets

An entity is a “thing” or “object” in the real world that is distinguishable from

all other objects. For example, each person in a university is an entity. An

entity has a set of properties, and the values for some set of properties may

uniquely identify an entity. For instance, a person may have a person id

property whose

value uniquely identifies that person. Thus, the value 677-89-9011 for person

id would uniquely identify one particular person in the university. Similarly,

courses can be thought of as entities, and course id uniquely identifies a

course entity in the university. An entity may be concrete, such as a person or

a book, or it may be abstract, such as a course, a course offering, or a flight

reservation.

An entity set is a set of entities of the same type that share the same

properties, or attributes. The set of all people who are instructors at a given

university, for example, can be defined as the entity set instructor. Similarly,

the entity set student might represent the set of all students in the university.

In the process of modeling, we often use the term entity set in the abstract,

without referring to a particular set of individual entities. We use the term

extension of the entity set to refer to the actual collection of entities belonging

to the entity set. Thus, the set of actual instructors in the university forms the

extension of the entity set instructor.

Entity sets do not need to be disjoint. For example, it is possible to define the

entity set of all people in a university (person). A person entity may be an

instructor entity, a student entity, both, or neither.

An entity is represented by a set of attributes. Attributes are descriptive

properties possessed by each member of an entity set. The designation of an

attribute for an entity set expresses that the database stores similar information

concerning each entity in the entity set; however, each entity may have its

own value for each attribute. Possible attributes of the instructor entity set are

ID, name, dept name, and salary. In real life, there would be further attributes,

such as street number, apartment number, state, postal code, and country, but

we omit them to keep our examples simple. Possible attributes of the course

entity set are course id, title, dept name, and credits. Each entity has a value

for each of its attributes. For instance, a particular

instructor entity may have the value 12121 for ID, the value Wu for name, the

value Finance for dept name, and the value 90000 for salary.

The ID attribute is used to identify instructors uniquely, since there may

be more than one instructor with the same name. In the United States, many

enterprises find it convenient to use the social-security number of a person2 as

an attribute whose value uniquely identifies the person. In general the

enterprise would have to create and assign a unique identifier for each

instructor.

A database thus includes a collection of entity sets, each of which contains

any number of entities of the same type. simple, only some of the attributes of

the two entity sets are shown. A database for a university may include a

number of other entity sets. For example, in addition to keeping track of

instructors and students, the university also has information about courses,

which are represented by the entity set course

History of Database systems

NOTES

Self-Instructional Material
26

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

3.5 Relationships and Relationship sets

A relationship is an association among several entities. For example,

we can define a relationship advisor that associates instructor Katz

with student Shankar. This relationship specifies that Katz is an

advisor to student Shankar.

A relationship set is a set of relationships of the same type. Formally,

it is a mathematical relation on n ≥ 2 (possibly nondistinct) entity sets.

If E1, E2, . . . , En are entity sets, then a relationship set R is a subset

of {(e1, e2, . . ., en) | e1 ∈ E1, e2 ∈ E2, . . . , en ∈ En}

where (e1, e2, . . ., en) is a relationship. Consider the two entity sets

instructor and student. We define the relationship set advisor to

denote the association between instructors and

students.

As another example, consider the two entity sets student and section.

We can define the relationship set takes to denote the association

between a student and the course sections in which that student is

enrolled.

The association between entity sets is referred to as participation; that

is, the entity sets E1, E2, . . . , En participate in relationship set R. A

relationship instance in an E-R schema represents an association

between the named entities in

the real-world enterprise that is being modeled. As an illustration, the

individual instructor entity Katz, who has instructor ID 45565, and

the student entity Shankar, who has student ID 12345, participate in a

relationship instance of advisor. This relationship instance represents

that in the university, the instructor Katz is advising

student Shankar.

The function that an entity plays in a relationship is called that

entity’s role. Since entity sets participating in a relationship set are

generally distinct, roles

Relationship Set Advisor

are implicit and are not usually specified. However, they are useful

when the meaning of a relationship needs clarification. Such is the

case when the entity sets of a relationship set are not distinct; that is,

the same entity set participates in a relationship set more than once, in

different roles. In this type of relationship set,

sometimes called a recursive relationship set, explicit role names are

necessary to specify how an entity participates in a relationship

instance. For example, consider the entity set course that records

 History of Database Systems
NOTES

 Self-Instructional Material
 27

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

information about all the courses offered in the university. To depict

the situation where one course (C2) is a prerequisite for another

course (C1) we have relationship set prereq that is modeled by

ordered pairs of course entities. The first course of a pair takes the

role of course C1, whereas the second takes the role of prerequisite

course C2. In this way, all relationships of prereq are characterized by

(C1, C2) pairs; (C2, C1) pairs are excluded.

A relationship may also have attributes called descriptive attributes.

Consider a relationship set advisor with entity sets instructor and

student.

3.6 Additioal features of ER Model

 Specialization – The process of designating to sub grouping within

an entity set is called specialization. In above figure, the “person” is

distinguish in to whether they are “employee” or “customer”.

Formally in above figure specialization is depicted by a triangle

component labelled (is a), means the customer is a person.

Sometime this ISA (is a) referred as a superclass-subclass

relationship. This is also used to emphasize on to creating the distinct

lower level entity sets.

 Generalization – generalization is relationship that exist between

higher level entity set and one or more lower level entity sets.

Generalization synthesizes these entity sets into single entity set.

 Higher level and lower level entity sets – This property is created by

specialization and generalization. The attributes of higher level entity

sets are inherited by lower level entity sets.

For example: In above figure “customers” and “employee” inherits

the attributes of “person”.

 Attribute inheritance: When given entity set is involved as a lower

entity set in only one “ISA” (is a) relationship, it is referred as a single

attribute inheritance. If lower entity set is involved in more than one

ISA (is a) relationship, it is referred as a multi attribute inheritance.

 Aggregation: there is a one limitation with E-R model that it cannot

express relationships among relationships. So aggregation is an

abstraction through which relationship is treated as higher level

entities.

3.7 Concept Design with the ER Model

Entity-Relationship model is used in the conceptual design of a database (☞

conceptual level, conceptual schema)

Design is independent of all physical considerations (DBMS, OS, . . .).

 A database schema in the ER model can be represented pictorially (Entity-

Relationship diagram)

A graphical technique for understanding and organizing the data independent

of the actual database implementation we need to be familiar with the

following terms to go further.

History of Database systems

NOTES

Self-Instructional Material
28

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Attribute

Attribute

Entity

Any thing that has an independent existence and about which we collect data.

It is also known as entity type. In ER modeling, notation for entity is given

below.

Entity instance

Entity instance is a particular member of the entity type. Example for entity

instance : A particular employee

Regular Entity

An entity which has its own key attribute is a regular entity. Example for

regular entity: Employee.

Weak entity

An entity which depends on other entity for its existence and doesn't have any

key attribute of its own is a weak entity. Example for a weak entity. In a

parent/child relationship, a parent is considered as a strong entity and the child

is a weak entity. In ER modeling, notation for weak entity is given below

Attributes

Properties/characteristics which describe entities are called attributes.

In ER modeling, notation for attribute is given below.

Domain of Attributes

The set of possible values that an attribute can take is called the domain of the

attribute. For example, the attribute day may take any value from the set

{Monday, Tuesday ... Friday}. Hence this set can be termed as the domain of

the attribute day.

Key attribute

The attribute (or combination of attributes) which is unique for every entity

instance is called key attribute. E.g the employee_id of an employee,

pan_card_number of a person and etc. If the key attribute consists of two or

more attributes in combination, it is called a composite key. In ER modeling,

notation for key attribute is given below.

Entity

Entity

 History of Database Systems
NOTES

 Self-Instructional Material
 29

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Simple attribute

If an attribute cannot be divided into simpler components, it is a simple

attribute. Example for simple attribute : employee_id of an employee.

Composite attribute

If an attribute can be split into components, it is called a composite attribute.

Example for composite attribute : Name of the employee which can be split

into First_name, Middle_name, and Last_name.

Single valued Attributes

If an attribute can take only a single value for each entity instance, it is a

single valued attribute. Example for single valued attribute : age of a student.

It can take only one value for a particular student.

Multi-valued Attributes

If an attribute can take more than one value for each entity instance, it is a

multi-valued attribute. Example for multi valued attribute : telephone number

of an employee, a particular employee may have multiple

telephone numbers. In ER modeling, notation for multi-valued attribute is

given below

Stored Attribute

An attribute which need to be stored permanently is a stored attribute

Example for stored attribute : name of a student

Derived Attribute

An attribute which can be calculated or derived based on other attributes is a

derived attribute. Example for derived attribute : age of employee which can

be calculated from date of birth and current date. In ER modeling, notation for

derived attribute is given below

Relationships

Associations between entities are called relationships.

Example: An employee works for an organization. Here "works for" is a

relation between the entities employee and organization. In ER modeling,

notation for relationship is given below.

Attribute

Attribute

Relationship

History of Database systems

NOTES

Self-Instructional Material
30

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

However in ER Modeling, To connect a weak Entity with others, you should

use a weak relationship notation as given below

Degree of a Relationship

Degree of a relationship is the number of entity types involved. The n-ary

relationship is the general form for degree n. Special cases are unary, binary,

and ternary ,where the degree is 1, 2, and 3, respectively. Example for unary

relationship: An employee is a manager of another employee

Example for binary relationship : An employee works-for department.

Example for ternary relationship : customer purchase item from a shop keeper

Cardinality of a Relationship

Relationship cardinalities specify how many of each entity type is allowed.

Relationships can have four possible connectivity as given below.

1. One to one (1:1) relationship

2. One to many (1:N) relationship

3. Many to one (M:1) relationship

4. Many to many (M:N) relationship

The minimum and maximum values of this connectivity is called the

cardinality of the relationship

Example for Cardinality – One-to-One (1:1)

Employee is assigned with a parking space

One employee is assigned with only one parking space and one parking space

is assigned to only one employee. Hence it is a 1:1 relationship and cardinality

is One-To-One (1:1) In ER modeling, this can be mentioned using notations

as given below

Example for Cardinality – One-to-Many (1:N)

Organization has employees

Relationship

 History of Database Systems
NOTES

 Self-Instructional Material
 31

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

One organization can have many employees , but one employee works in only

one organization. Hence it is a 1:N relationship and cardinality is One-To-

Many (1:N) In ER modeling, this can be mentioned using notations as given

below

Example for Cardinality – Many-to-One (M :1)
It is the reverse of the One to Many relationship. employee works in

organization

One employee works in only one organization But one organization can have

many employees. Hence it is a M:1 relationship and cardinality is Many-to-

One (M :1)

In ER modeling, this can be mentioned using notations as given below.

Cardinality – Many-to-Many (M:N)

Students enrols for courses

History of Database systems

NOTES

Self-Instructional Material
32

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

One student can enrol for many courses and one course can be enrolled by

many students. Hence it is a M:N relationship and cardinality is Many-to-

Many (M:N)

3.8 Conceptual Design for Large enterprises

The process of conceptual design consists of more than just describing small

fragments of the application in terms of ER diagrams.

For a large enterprise, the design may require the efforts of more than one

designer and span data and application code used by a number of user groups.

An important aspect of the design process is the methodology used to

structure the development of the overall design and to ensure that the design

takes into account all user requirements and is consistent.

The usual approach is that the requirements of various user groups are

considered, any conflicting requirements are somehow resolved, and a single

set of global requirements is generated at the end of the requirements analysis

phase.

An alternative approach is to develop separate conceptual schemas for

different user groups and to then integrate these conceptual schemas.

To integrate multiple conceptual schemas, we must establish correspondences

between entities, relationships, and attributes, and we must resolve numerous

kinds of conflicts.

3.9 Answers to Check Your Progress Questions

1. Database design has four phases: requirements analysis, conceptual

design, logical design, and physical design.

2. The entity-relationship (E-R) data model was developed to facilitate

database design by allowing specification of an enterprise schema that

represents the overall logical structure of a database.

3. An entity is a “thing” or “object” in the real world that is

distinguishable from all other objects.

3.10 Summary

• The ER model is a high-level data model diagram

• ER diagrams are a visual tool which is helpful to represent the ER

model Entity relationship diagram displays the relationships of entity

set stored in a database

• ER diagrams help you to define terms related to entity relationship

modeling

• ER model is based on three basic concepts: Entities, Attributes &

Relationships

Check Your Progress

1. What are the phases in database design?

2. Define: ER model

3. What is meant by an entity?

 History of Database Systems
NOTES

 Self-Instructional Material
 33

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

• An entity can be place, person, object, event or a concept, which

stores data in the database

• Relationship is nothing but an association among two or more entities

• A weak entity is a type of entity which doesn't have its key attribute

• It is a single-valued property of either an entity-type or a relationship-

type

• It helps you to defines the numerical attributes of the relationship

between two entities or entity sets

3.11 Keywords

• A thing or object in the real world with an independent existence that

can be differentiated from other objects is an entity

• A collection of entities of an entity type at a point of time is an entity

set.

• A collection of similar entities are the entity type.

• An attribute in a table that references the primary key in another table

OR it can be null is known as foreign key .

• Composite attributes, attributes that consist of a hierarchy of

attributes

• Composite key: composed of two or more attributes, but it must be

minimal

• Attributes that contain values calculated from other attributes are

derived attributes

3.12 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Entity

2. What is meant by Entity set?

3. What are the features of ER model?

4. What is an attribute?

Long Answer Questions:

1. Describe the data base design and ER diagrams

2. Describe the features of the ER model

3. Write short notes on

a. Conceptual Design with ER model

b. Conceptual Design for Large enterprises

3.13 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011.

 Introduction to Relational Model

NOTES

Self-Instructional Material
34

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

BLOCK – II

 RELATIONAL MODEL

UNIT IV INTRODUCTION

Structure

4.1 Introduction

4.2 Objectives

4.3 Structure of Relational Model

4.4 Integrity Constraint over Relations

4.5 Enforcing Integrity constraints

4.6 Querying relational data

4.7 Logical Database Design

4.8 Introduction to Views

4.9 Destroying / altering Tables and Views

4.10 Answers to Check Your Progress Questions

4.11 Summary

4.12 Key Words

4.13 Self-Assessment Questions and Exercises

4.14 Further Readings

4.1 Introduction

The relational model represents the database as a collection of relations. A

relation is nothing but a table of values. Every row in the table represents a

collection of related data values. These rows in the table denote a real-world

entity or relationship. In relational model, the data and relationships are

represented by collection of inter-related tables. Each table is a group of

column and rows, where column represents attribute of an entity and rows

represents records.

4.2 Objectives

This chapter will impart the concepts of:

 Relational model

 Structure of relational model

 Integrity constraints

 Querying relational data

 views

Introduction to Relational Model
 NOTES

 Self-Instructional Material
 35

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

4.3 Structure of Relational Model

The relational model is today the primary data model for commercial data

processing applications. It attained its primary position because of its

simplicity, which eases the job of the programmer, compared to earlier data

models such as the network model or the hierarchical model. In this, we first

study the fundamentals of the relational model. A substantial theory exists for

relational databases.

Structure of Relational Databases:

A relational database consists of a collection of tables, each of which is

assigned a unique name. For example, consider the Faculty table of Table 4.1,

which stores information about Faculty members. The table has four column

headers: Fac_id, Fac_name, dept, and Position. Each row of this table records

information about a Faculty member, consisting of the Faculty member’s ID,

name, dept name, and position. Similarly, the course table of Table 4.2, stores

information about courses, consisting of a course id, title, dept name, and

credits, for each course. Note that each Faculty member is identified by the

value of the column Fac_id, while each course is identified by the value of the

column course id. Table 4.3 shows a third table, prerequisites, which stores

the prerequisite courses for each course. The table has two columns, course id

and prereq id. Each row consists of a pair of course identifiers such that the

second course is a prerequisite for the first course. Thus, a row in the prereq

table indicates that two courses are related in the sense that one course is a

prerequisite for the other.

Table 4.1 Faculty Relation

Fac_id Fac_name Dept Posisiton

F101 Dr. S. Raman Comp. Sci. Professor

F103 Dr. M. Balaji Comp. Sci. Asst. Professor

F204 Dr. M. John Tamil Asst. Professor

F206 Dr. K. Kumar Tamil Asst. Professor

F401 Dr. S. Sunil English Asst. Professor

F305 Dr. F. Mohamed Maths Professor

F306 Dr. K. Mala Maths Assoc. Professor

In general, a row in a table represents a relationship among a set of values.

Since a table is a collection of such relationships, there is a close

correspondence between the concept of table and the mathematical concept of

relation, from which the relational data model takes its name. In mathematical

terminology, a tuple is simply a sequence (or list) of values. A relationship

between n values is represented mathematically by an n-tuple of values, i.e., a

tuple with n values, which corresponds to a row in a table.

 Introduction to Relational Model

NOTES

Self-Instructional Material
36

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Table 4.2 Course Relation

Course_id Title Dept Credits

CS-101 Fundamentals of Programming Comp. Sci. 3

MA-101 Principles of Calculus Maths 3

TA-102 Tamil Illakiya Varalaru Tamil 3

TA-204 Tholkappium Tamil 5

EN-101 Basic Communicative English English 3

MA-205 Advanced Calculus Maths 5

CS-204 Java Programming Comp. Sci. 5

Table 4.3 Prerequisites Relation

Course_id Prereq_id

TA-204 TA-102

MA-205 MA-101

CS-204 CS-101

Thus, in the relational model the term relation is used to refer to a table, while

the term tuple is used to refer to a row. Similarly, the term attribute refers to

a column of a table. Examining Table 4.1, we can see that the relation Faculty

has four attributes: Fac_id, fac_name, dept, and position. We use the term

relation instance to refer to a specific instance of a relation, i.e., containing a

specific set of rows. The instance of Faculty shown in Table 4.1 has 7 tuples,

corresponding to 7 Faculty members.

In this topic, we shall be using a number of different relations to illustrate the

various concepts underlying the relational data model. These relations

represent part of a university. They do not include all the data an actual

university database would contain, in order to simplify our presentation.

The order in which tuples appear in a relation is irrelevant, since a relation is a

set of tuples. Thus, whether the tuples of a relation are listed in sorted order,

as in Table 4.1, or are unsorted, as in Table 4.4, does not matter;

the relations in the two figures are the same, since both contain the same set of

tuples. For ease of exposition, we will mostly show the relations sorted by

their first attribute. For each attribute of a relation, there is a set of

permitted values, called the domain of that attribute. Thus, the domain of the

salary attribute of the Faculty relation is the set of all possible salary values,

while the domain of the name attribute is the set of all possible Faculty names.

We require that, for all relations r, the domains of all attributes of r be atomic.

A domain is atomic if elements of the domain are considered to be indivisible

units.

Table 4.4 Unsorted Faculty Relation

Fac_id Fac_name Dept Posisiton

F101 Dr. S. Raman Comp. Sci. Professor

F306 Dr. K. Mala Maths Assoc. Professor

F204 Dr. M. John Tamil Asst. Professor

F601 Dr. M. Shahana Physics Assoc. Professor

F401 Dr. S. Sunil English Asst. Professor

F305 Dr. F. Mohamed Maths Professor

Introduction to Relational Model
 NOTES

 Self-Instructional Material
 37

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

F206 Dr. K. Kumar Tamil Asst. Professor

F103 Dr. M. Balaji Comp. Sci. Asst. Professor

For example, suppose the table Faculty had an attribute phone number, which

can store a set of phone numbers corresponding to the Faculty. Then the

domain of phone number would not be atomic, since an element of the

domain is a set of phone numbers, and it has subparts, namely the individual

phone numbers in the set.

The important issue is not what the domain itself is, but rather how we use

domain elements in our database. Suppose now that the phone number

attribute stores a single phone number. Even then, if we split the value

from the phone number attribute into a country code, an area code and a local

number, we would be treating it as a non-atomic value. If we treat each phone

number as a single indivisible unit, then the attribute phone number would

have an atomic domain.

The null value is a special value that signifies that the value is unknown or

does not exist. For example, suppose as before that we include the attribute

phone number in the Faculty relation. It may be that a Faculty does

not have a phone number at all, or that the telephone number is unlisted. We

would then have to use the null value to signify that the value is unknown or

does not exist. We shall see later that null values cause a number of

difficulties when we access or update the database, and thus should be

eliminated if at all possible. We shall assume null values are absent initially.

Creating a basic table involves naming the table and defining its columns and

each column's data type.

The SQL CREATE TABLE statement is used to create a new table.

Syntax

The basic syntax of the CREATE TABLE statement is as follows −

CREATE TABLE table_name(

 column1 datatype,

 column2 datatype,

 column3 datatype,

 columnN datatype,

 PRIMARY KEY(one or more columns)

);

4.4 Integrity Constraints over Relations

Database integrity refers to the validity and consistency of stored data.

Integrity is usually expressed in terms of constraints, which are consistency

rules that the database is not permitted to violate. Constraints may apply to

each attribute or they may apply to relationships between tables.

 Introduction to Relational Model

NOTES

Self-Instructional Material
38

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Integrity constraints ensure that changes (update deletion, insertion) made to

the database by authorized users do not result in a loss of data consistency.

Thus, integrity constraints guard against accidental damage to the database.

4.4.1 Types of Integrity Constraints

Various types of integrity constraints are-

a. Domain Integrity

b. Entity Integrity Constraint

c. Referential Integrity Constraint

d. Key Constraints

a. Domain Integrity- Domain integrity means the definition of a valid set of

values for an attribute. You define data type, length or size, is null value

allowed , is the value unique or not for an attribute ,the default value, the

range (values in between) and/or specific values for the attribute.

b. Entity Integrity Constraint- This rule states that in any database relation

value of attribute of a primary key can't be null.

c. Referential Integrity Constraint-It states that if a foreign key exists in a

relation then either the foreign key value must match a primary key value

of some tuple in its home relation or the foreign key value must be null.

d. Key Constraints- A Key Constraint is a statement that a

certain minimal subset of the fields of a relation is a unique identifier for a

tuple.

There are 4 types of key constraints-

 Candidate key.

 Super key

 Primary key

 Foreign key

4.4.2 Key Constraints

We must have a way to specify how tuples within a given relation are

distinguished. This is expressed in terms of their attributes. That is, the values

of the attribute values of a tuple must be such that they can uniquely identify

the tuple. In other words, no two tuples in a relation are allowed to have

exactly the same value for all attributes.

A superkey is a set of one or more attributes that, taken collectively, allow us

to identify uniquely a tuple in the relation. For example, the ID attribute of the

relation Faculty is sufficient to distinguish one Faculty tuple from another.

Thus, ID is a superkey. The name attribute of Faculty, on the other hand, is

not a superkey, because several Faculty members might have the same name.

Formally, let R denote the set of attributes in the schema of relation r. If we

say that a subset K of R is a superkey for r , we are restricting consideration to

instances of relations r in which no two distinct tuples have the same values

Introduction to Relational Model
 NOTES

 Self-Instructional Material
 39

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

on all attributes in K. That is, if t1 and t2 are in r

and t1 = t2, then t1.K = t2.K.

A superkey may contain extraneous attributes. For example, the combination

of ID and name is a superkey for the relation Faculty. If K is a superkey, then

so is any superset of K. We are often interested in superkeys for which no

proper subset is a superkey. Such minimal superkeys are called candidate

keys.

It is possible that several distinct sets of attributes could serve as a candidate

key. Suppose that a combination of name and dept name is sufficient to

distinguish among members of the Faculty relation. Then, both {ID} and

{name, dept name} are candidate keys. Although the attributes ID and name

together can distinguish Faculty tuples, their combination, {ID, name}, does

not form a candidate key, since the attribute ID alone is a candidate key.

We shall use the term primary key to denote a candidate key that is chosen

by the database designer as the principal means of identifying tuples within a

relation. A key (whether primary, candidate, or super) is a property of the

entire relation, rather than of the individual tuples. Any two individual tuples

in the relation are prohibited from having the same value on the key attributes

at the same time. The designation of a key represents a constraint in the real-

world enterprise being modelled.

Primary keys must be chosen with care. As we noted, the name of a person is

obviously not sufficient, because there may be many people with the same

name. In the United States, the social-security number attribute of a person

would be a candidate key. Since non-U.S. residents usually do not have

social-security numbers, international enterprises must generate their own

unique identifiers.

An alternative is to use some unique combination of other attributes as a key.

The primary key should be chosen such that its attribute values are never, or

very rarely, changed. For instance, the address field of a person

should not be part of the primary key, since it is likely to change. Social-

security numbers, on the other hand, are guaranteed never to change. Unique

identifiers generated by enterprises generally do not change, except if two

enterprises merge; in such a case the same identifier may have been issued by

both enterprises, and a reallocation of identifiers may be required to make sure

they are unique.

It is customary to list the primary key attributes of a relation schema before

the other attributes; for example, the dept name attribute of department is

listed first, since it is the primary key. Primary key attributes are also

underlined. A relation, say r1, may include among its attributes the primary

key of another relation, say r2. This attribute is called a foreign key from r1,

referencing r2.

The relation r1 is also called the referencing relation of the foreign key

dependency, and r2 is called the referenced relation of the foreign key. For

 Introduction to Relational Model

NOTES

Self-Instructional Material
40

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

example, the attribute dept name in Faculty is a foreign key from

Faculty, referencing department, since dept name is the primary key of

department. In any database instance, given any tuple, say ta, from the

Faculty relation, there must be some tuple, say tb, in the department relation

such that the value of the dept name attribute of ta is the same as the value of

the primary key, dept name, of tb.

Now consider the section and teaches relations. It would be reasonable to

require that if a section exists for a course, it must be taught by at least one

Faculty; however, it could possibly be taught by more than one

Faculty. To enforce this constraint, we would require that if a particular

(course id, sec id, semester, year) combination appears in section, then the

same combination must appear in teaches. However, this set of values

does not form a primary key for teaches, since more than one Faculty may

teach one such section. As a result, we cannot declare a foreign key constraint

from section to teaches (although we can define a foreign key

constraint in the other direction, from teaches to section).

The constraint from section to teaches is an example of a referential

integrity constraint; a referential integrity constraint requires that the values

appearing in specified attributes of any tuple in the referencing relation also

appear in specified attributes of at least one tuple in the referenced relation.

4.5 Enforcing Integrity constraints

Data integrity refers to the correctness and completeness of data within a

database. To enforce data integrity, you can constrain or restrict the data

values that users can insert, delete, or update in the database. These

mechanisms allow you to maintain these types of data integrity:

 Requirement – requires that a table column must contain a valid value

in every row; it cannot allow null values. The create table statement

allows you to restrict null values for a column.

 Check or validity – limits or restricts the data values inserted into a

table column. You can use triggers or rules to enforce this type of

integrity.

 Uniqueness – no two table rows can have the same non-null values

for one or more table columns. You can use indexes to enforce this

integrity.

 Referential – data inserted into a table column must already have

matching data in another table column or another column in the same

table. A single table can have up to 192 references.

4.6 Querying Relational Data

A query is a request for data or information from a database table or

combination of tables. This data may be generated as results returned by

Introduction to Relational Model
 NOTES

 Self-Instructional Material
 41

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Structured Query Language (SQL) or as pictorials, graphs or complex results,

e.g., trend analyses from data-mining tools.

One of several different query languages may be used to perform a range of

simple to complex database queries. SQL, the most well-known and widely-

used query language, is familiar to most database administrators (DBAs).

4.7 Logical Database Design

4.7.1 Database Schema

When we talk about a database, we must differentiate between the database

schema, which is the logical design of the database, and the database

instance, which is a snapshot of the data in the database at a given

instant in time. The concept of a relation corresponds to the programming-

language notion of a variable, while the concept of a relation schema

corresponds to the programming-language notion of type definition.

In general, a relation schema consists of a list of attributes and their

corresponding domains. The concept of a relation instance corresponds to the

programming-language notion of a value of a variable. The value of a given

variable may change with time;

Table 4.5 Department Relation

Dept_name Campus No. of Rooms

Comp. Sci. Science 7

Maths Science 5

Tamil Arts 4

Physics Science 9

English Arts 5

Bio-technology Science 6

Physical Education Education 8

Social Works Arts 4

Similarly, the contents of a relation instance may change with time as the

relation is updated. In contrast, the schema of a relation does not generally

change. Although it is important to know the difference between a

relation schema and a relation instance, we often use the same name, such as

Faculty, to refer to both the schema and the instance. Where required, we

explicitly refer to the schema or to the instance, for example “the

Faculty schema,” or “an instance of the Faculty relation.” However, where it

is clear whether we mean the schema or the instance, we simply use the

relation name.

Consider the department relation of Table 4.5. The schema for that relation is

department (dept, campus, No. of Rooms)

 Introduction to Relational Model

NOTES

Self-Instructional Material
42

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

 Note that the attribute dept appears in both the Faculty schema and the

department schema. This duplication is not a coincidence. Rather, using

common attributes in relation schemas is one way of relating tuples of distinct

relations.

For example, suppose we wish to find the information about all the Faculty

members who work in the Science Campus. We look first at the department

relation to find the dept name of all the departments housed in Science

campus. Then, for each such department, we look in the Faculty relation to

find the information about the Faculty associated with the corresponding dept

name.

Let us continue with our university database example. Each course in a

university may be offered multiple times, across different semesters, or even

within a semester. We need a relation to describe each individual

offering, or section, of the class. The schema is

section (course id, semester, year, dept)

Table 4.6 Section Relation

Course_id Semster Year Dept

CS-101 1 I Comp. Sci.

MA-101 2 I Maths

TA-102 1 I Tamil

TA-204 3 II Tamil

EN-101 1 I English

MA-205 4 II Maths

CS-204 4 II Comp. Sci.

Table 4.6 shows a sample instance of the section relation. We need a relation

to describe the association between Faculty and the class sections that they

teach. The relation schema to describe this association is

teaches (fac_id, course id, semester, dept)

Table 4.7 Teaches Relation

Fac_id Course_id Semster Dept

F101 CS-101 1 Comp. Sci.

F306 MA-101 2 Maths

F204 TA-102 1 Tamil

F206 TA-204 3 Tamil

F401 EN-101 1 English

F305 MA-205 4 Maths

F103 CS-204 4 Comp. Sci.

Table 4.7 shows a sample instance of the teaches relation. As you can

imagine, there are many more relations maintained in a real university

database. In addition to those relations we have listed already, Faculty,

Introduction to Relational Model
 NOTES

 Self-Instructional Material
 43

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

department, course, section, prereq, and teaches, we use the following

relations in this text:

 student (ID, name, dept name, tot cred)

 advisor (s id, i id)

 takes (ID, course id, sec id, semester, year, grade)

 classroom (building, room number, capacity)

 time slot (time slot id, day, start time, end time)

4.7.2 Schema Diagrams

A database schema, along with primary key and foreign key dependencies,

can be depicted by schema diagrams. Figure 4.1 shows the schema diagram

for our university organization. Each relation appears as a

box, with the relation name at the top in blue, and the attributes listed inside

the box. Primary key attributes are shown underlined. Foreign key

dependencies appear as arrows from the foreign key attributes of the

referencing relation to the primary key of the referenced relation.

Figure 4.1 Schema Diagram for University Database

Referential integrity constraints other than foreign key constraints are not

shown explicitly in schema diagrams. We will study a different diagrammatic

representation called the entity-relationship diagram

4.8 Introduction to Views

A view is nothing more than a SQL statement that is stored in the database

with an associated name. A view is actually a composition of a table in the

form of a predefined SQL query.

 Introduction to Relational Model

NOTES

Self-Instructional Material
44

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

A view can contain all rows of a table or select rows from a table. A view

can be created from one or many tables which depends on the written SQL

query to create a view.

Views, which are a type of virtual tables allow users to do the following −

 Structure data in a way that users or classes of users find natural or

intuitive.

 Restrict access to the data in such a way that a user can see and

(sometimes) modify exactly what they need and no more.

 Summarize data from various tables which can be used to generate

reports.

4.8.1 Creating Views

Database views are created using the CREATE VIEW statement. Views can

be created from a single table, multiple tables or another view.

To create a view, a user must have the appropriate system privilege

according to the specific implementation.

The basic CREATE VIEW syntax is as follows −

CREATE VIEW view_name AS SELECT column1, column2.....

FROM table_name WHERE [condition];

You can include multiple tables in your SELECT statement in a similar way

as you use them in a normal SQL SELECT query.

Example

Consider the CUSTOMERS table having the following schema

Customers (cust_id, cust_name, age, address, mobile)

Following is an example to create a view from the CUSTOMERS table. This

view would be used to have customer name and age from the CUSTOMERS

table.

SQL > CREATE VIEW CUSTOMERS_VIEW AS SELECT name, age

FROM CUSTOMERS;

Now, you can query CUSTOMERS_VIEW in a similar way as you query an

actual table. Following is an example for the same.

SQL > SELECT * FROM CUSTOMERS_VIEW;

4.8.2 Views with Check Option

The WITH CHECK OPTION is a CREATE VIEW statement option. The

purpose of the WITH CHECK OPTION is to ensure that all UPDATE and

INSERTs satisfy the condition(s) in the view definition.

If they do not satisfy the condition(s), the UPDATE or INSERT returns an

error.

Introduction to Relational Model
 NOTES

 Self-Instructional Material
 45

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

The following code block has an example of creating same view

CUSTOMERS_VIEW with the WITH CHECK OPTION.

CREATE VIEW CUSTOMERS_VIEW AS SELECT name, age

FROM CUSTOMERS WHERE age IS NOT NULL WITH CHECK

OPTION;

The WITH CHECK OPTION in this case should deny the entry of any

NULL values in the view's AGE column, because the view is defined by data

that does not have a NULL value in the AGE column.

4.8.3. Updating a View

A view can be updated under certain conditions which are given below −

 The SELECT clause may not contain the keyword DISTINCT.

 The SELECT clause may not contain summary functions.

 The SELECT clause may not contain set functions.

 The SELECT clause may not contain set operators.

 The SELECT clause may not contain an ORDER BY clause.

 The FROM clause may not contain multiple tables.

 The WHERE clause may not contain subqueries.

 The query may not contain GROUP BY or HAVING.

 Calculated columns may not be updated.

 All NOT NULL columns from the base table must be included in the

view in order for the INSERT query to function.

So, if a view satisfies all the above-mentioned rules then you can update that

view. The following code block has an example to update the age of Ramesh.

SQL > UPDATE CUSTOMERS_VIEW SET AGE = 35 WHERE

name = 'Ramesh';

This would ultimately update the base table CUSTOMERS and the same

would reflect in the view itself. Now, try to query the base table and the

SELECT statement would produce the following result.

4.9 Destroying / altering Tables and Views

4.9.1 Altering the Tables

The SQL ALTER TABLE command is used to add, delete or modify columns

in an existing table. You should also use the ALTER TABLE command to

add and drop various constraints on an existing table.

Syntax

The basic syntax of an ALTER TABLE command to add a New Column in an

existing table is as follows.

ALTER TABLE table_name ADD column_name datatype;

 Introduction to Relational Model

NOTES

Self-Instructional Material
46

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

The basic syntax of an ALTER TABLE command to DROP COLUMN in an

existing table is as follows.

ALTER TABLE table_name DROP COLUMN column_name;

The basic syntax of an ALTER TABLE command to change the DATA

TYPE of a column in a table is as follows.

ALTER TABLE table_name MODIFY COLUMN column_name

datatype;

The basic syntax of an ALTER TABLE command to add a NOT NULL

constraint to a column in a table is as follows.

ALTER TABLE table_name MODIFY column_name datatype NOT

NULL;

The basic syntax of ALTER TABLE to ADD UNIQUE CONSTRAINT to a

table is as follows.

ALTER TABLE table_name ADD CONSTRAINT

MyUniqueConstraint UNIQUE(column1, column2...);

The basic syntax of an ALTER TABLE command to ADD CHECK

CONSTRAINT to a table is as follows.

ALTER TABLE table_name ADD CONSTRAINT

MyUniqueConstraint CHECK (CONDITION);

The basic syntax of an ALTER TABLE command to ADD PRIMARY KEY

constraint to a table is as follows.

ALTER TABLE table_name ADD CONSTRAINT MyPrimaryKey

PRIMARY KEY (column1, column2...);

The basic syntax of an ALTER TABLE command to DROP CONSTRAINT

from a table is as follows.

ALTER TABLE table_name DROP CONSTRAINT

MyUniqueConstraint;

4.9.2 Deleting Rows from a Table / View

Rows of data can be deleted from a table / view.

Following is an example to delete all records in both tables / views.

SQL > DELETE FROM CUSTOMERS;

Check Your Progress

1. What is domain integrity?

2. What is meant by Querying relational Data?

3. Define: Views

Introduction to Relational Model
 NOTES

 Self-Instructional Material
 47

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

SQL > DELETE FROM CUSTOMERS_VIEW;

The WHERE clause can be used to delete a record from table / view with

conditions. Following is an example to delete a record having AGE = 22 in

both tables / views.

SQL > DELETE FROM CUSTOMERS WHERE age = 22;

SQL > DELETE FROM CUSTOMERS_VIEW WHERE age = 22;

This would ultimately delete a row from the base table CUSTOMERS and

the same would reflect in the view itself.

4.9. 3. Dropping Tables / Views

The syntax to drop a table / view are given below −

 DROP TABLE table_name;

 DROP VIEW view_name;

Following is an example to drop the CUSTOMERS_VIEW and

CUSTOMERS table.

DROP TABLE CUSTOMERS;

DROP VIEW CUSTOMERS_VIEW;

4.10 Answers to Check Your Progress Questions

1. Domain integrity means the definition of a valid set of values for an

attribute.

2. A query is a request for data or information from a database table or

combination of tables. This data may be generated as results returned by

Structured Query Language (SQL) or as pictorials, graphs or complex

results, e.g., trend analyses from data-mining tools.

3. A view is nothing more than a SQL statement that is stored in the

database with an associated name. A view is actually a composition of a

table in the form of a predefined SQL query.

4.11 Summary

• A relational database consists of a collection of tables each of which

is assigned a unique name.

• There is a set of permitted values, called the domain of that attribute.

• Database integrity refers to the validity and consistency of stored

data.

• A superkey is a set of one or more attributes that, taken collectively,

allow us to identify uniquely a tuple in the relation.

• Minimal superkeys are called candidate keys.

• Term primary key to denote a candidate key that is chosen by the

database designer as the principal means of identifying tuples within a

relation.

 Introduction to Relational Model

NOTES

Self-Instructional Material
48

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

• Data integrity refers to the correctness and completeness of data

within a database.

• The create table statement allows you to restrict null values for a

column.

• A query is a request for data or information from a database table or

combination of tables.

• The SQL ALTER TABLE command is used to add, delete or modify

columns in an existing table.

• A database schema, along with primary key and foreign key

dependencies, can be depicted by schema diagrams.

4.12 Keywords

• Collection of tables having unique name is known as relational

database.

• The term relation is used to refer to a table, while the term tuple is

used to refer to a row.

• The minimal set of attribute which can uniquely identify a tuple is

known as candidate key.

• The correctness and completeness of data within a database is known

as Data integrity.

4.13 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Relational Database

2. Define: Attribute.

3. Name the types of Database integrity constraint?

4. What is Super Key?

5. Write the syntax of Alter table.

Long Answer Questions:

1. Describe the structure of Relational Model.

2. Write short-notes on the following:

a. Candidate key.

b. Super key

c. Primary key

d. Foreign key

3. Write short-notes on the following:

a. View table

b. Altering table

c. Destroying table

4.14 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011.

 Relational Algebra
NOTES

 Self-Instructional Material
 49

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

UNIT V RELATIONAL ALGEBRA

Structure

5.1 Introduction

5.2 Objectives

5.3 Introduction to Relational Algebra

5.4 Selection and projection set operations

5.5 Renaming

5.6 Joins

5.7 Division

5.8 Examples of Algebra overviews

5.9 Answers to Check Your Progress Questions

5.10 Summary

5.11 Key Words

5.12 Self-Assessment Questions and Exercises

5.13 Further Readings

5.1 Introduction

Relational database systems are expected to be equipped with a query

language that can assist its users to query the database instances. There are

two kinds of query languages − relational algebra and relational calculus.

Relational algebra is a procedural query language, which takes instances of

relations as input and yields instances of relations as output. It uses operators

to perform queries. An operator can be either unary or binary. They accept

relations as their input and yield relations as their output. Relational algebra is

performed recursively on a relation and intermediate results are also

considered relations.

5.2 Objectives

After reading this chapter, you will be able to understand:

 Relational algebra

 Operations using relational algebra

 Joins

 Division

5.3 Introduction to Relational Algebra

Relational algebra is a widely used procedural query language. It collects

instances of relations as input and gives occurrences of relations as output. It

uses various operations to perform this action. Queries in algebra are

composed using a collection of operators. A fundamental property is that

every operator in the algebra accepts (one or two) relation instances as

arguments and returns a relation instance as the result. This property makes it

easy to compose operators to form a complex query—a relational algebra

Relational Algebra

NOTES

Self-Instructional Material
50

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

expression is recursively defined to be a relation, a unary algebra operator

applied to a single expression, or a binary algebra operator applied to two

expressions.

The following sections describe the basic operators of the algebra (selection,

projection, union, cross-product, and difference), as well as some additional

operators that can be defined in terms of the basic operators but arise

frequently enough to warrant special attention, in the following sections.

Each relational query describes a step-by-step procedure for computing the

desired answer, based on the order in which operators are applied in the

query. The procedural nature of the algebra allows us to think of an algebra

expression as a recipe, or a plan, for evaluating a query, and relational

systems in fact use algebra expressions to represent query evaluation plans.

To explain the relational algebraic operations, the following sections uses the

below mentioned schemes of on-line hotel booking portal are used.

Customer (cid, cname, mobile, city)

Hotel (hid, hname, rate)

Reserves (cid, hid, day)

The customer relation having the attributes to store the details of customers

of the portal with cid is the key field. The Hotel relation has some fields with

hid is the key field. Whereas, for Reserves relation, cid and hid fields are key

fields.

Table 5.1 a. ‘Customer’ Relation

cid Cname mobile City

C1001 B. Raju 8976894567 Chennai

C2546 M. Sunil 8876921234 Salem

C1456 C. Kunal 9444324578 Chennai

C1324 K. Kamal 9443478902 Madurai

C4578 K. Chitra 9897452123 Chennai

C3456 S. Bala 9789012134 Karaikudi

Table 5.1 b. ‘Hotel’ Relation

hid hname Rate

H101 The Conclave 5000.00

H124 Heritage Inn 6750.00

H456 The Holidays 4300.00

Table 5.1 c. ‘Reserves’ Relation

cid hid Day

C1001 H101 8.9.2019

C1456 H456 17.8.2019

C4578 H124 4.9.2019

C1324 H101 6.8.2019

C1001 H101 7.10.2019

C2456 H456 14.9.2019

C1456 H124 28.8.2019

 Relational Algebra
NOTES

 Self-Instructional Material
 51

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Basic Relational Algebra Operations:

Relational Algebra divided in various groups

Unary Relational Operations

 SELECT (symbol: σ)

 PROJECT (symbol: π)

 RENAME (symbol: ρ)

Relational Algebra Operations From Set Theory

1. UNION (U)

2. INTERSECTION (∩),

3. DIFFERENCE (-)

4. CARTESIAN PRODUCT (x)

Binary Relational Operations

 JOIN

 DIVISION

5.4 Selection and projection set operations

The SELECT operation is used for selecting a subset of the tuples according

to a given selection condition. Sigma(σ)Symbol denotes it. It is used as an

expression to choose tuples which meet the selection condition. Select

operation selects tuples that satisfy a given predicate.

σp(r)

σ is the predicate

r stands for relation which is the name of the table

p is prepositional logic

The projection eliminates all attributes of the input relation but those

mentioned in the projection list. The projection method defines a relation that

contains a vertical subset of Relation.

This helps to extract the values of specified attributes to eliminate duplicate

values. (pi) The symbol used to choose attributes from a relation. This

operation helps you to keep specific columns from a relation and discards the

other columns.

π fields (r)

π is the predicate

r stands for relation which is the name of the table

fields are the attributes of the relation

These operations allow us to manipulate data in a single relation. Consider the

Customer relation. We can retrieve rows corresponding to customers from a

particular city by using the σ operator. The expression, σcity=’Chennai’(Customer)

evaluates to the relation as shown in Table 5.2. The subscript city=’Chennai’

specifies the selection criterion to be applied while retrieving tuples.

Relational Algebra

NOTES

Self-Instructional Material
52

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Table 5.2 Selection {σcity=’Chennai’(Customer)}

cid Cname Mobile City

C1001 B. Raju 8976894567 Chennai

C1456 C. Kunal 9444324578 Chennai

C4578 K. Chitra 9897452123 Chennai

The selection operator σ specifies the tuples to retain through a selection

condition. In general, the selection condition is a Boolean combination (i.e.,

an expression using the logical connectives ∧ and ∨) of terms that have the

form attribute op constant or attribute1 op attribute2, where op is one of the

comparison operators <, <=, =, =, >=, or >. The reference to an attribute can

be by position (of the form .i or i) or by name (of the form .name or name).

The schema of the result of a selection is the schema of the input relation

instance.

The projection operator π allows us to extract columns from a relation; for

example, we can find out all hotel names and rate by using π. The expression

πhname,rate (Hotel) as shown in Table 5.3.

Table 5.3 Projection {πhname,rate (Hotel)}

Hname Rate

The Conclave 5000.00

Heritage Inn 6750.00

The Holidays 4300.00

Suppose that we wanted to find out only the details (hid and hname) of the

hotels with Rate is less than Rs. 6000/-. The expression is

π hid,hname (σrate <6000.00 (Hotel))

Figure 5.4 Result of { π hid,hname (σrate <6000.00 (Hotel)) }

hid hname

H101 The Conclave

H456 The Holidays

Set Operations

The following relations given in 5.5.a Hostel, 5.5.b Student, 5.5.c Mess and

5.5.d All Mess are used to illustrate the set operators:

Table 5.5.a ‘Hostel’ Relation

Room_No Name Address Phone Age

1 RAM CHENNAI 9455123451 18

5 NARESH MADURAI 9782918192 22

6 SWETA CHENNAI 9852617621 21

4 SURESH KARAIKUDI 9156768971 18

 Relational Algebra
NOTES

 Self-Instructional Material
 53

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

 Table 5.5.a ‘Student’ Relation

Stud_No Name Address Phone Age

1 RAM DELHI 9455123451 18
2 RAMESH GURGAON 9652431543 18
3 SUJIT ROHTAK 9156253131 20
4 SURESH DELHI 9156768971 18

 Table 5.5.c ‘Mess’ Relation

Room_No Mess

1 VEG
5 NON-VEG
6 VEG
4 NON-VEG
5 VEG

Table 5.5.d ‘All Mess’ Relation

Mess

VEG
NON-VEG

The following standard operations on sets are also available in relational

algebra: union (U), intersection (∩), set-difference (-), and cross-product (×).

 Union: R U S returns a relation instance containing all tuples that occur in

either relation instance R or relation instance S (or both). R and S must be

unioncompatible, and the schema of the result is defined to be identical to

the schema of R.

 Intersection: R ∩ S returns a relation instance containing all tuples that

occur in both R and S. The relations R and S must be union-compatible,

and the schema of the result is defined to be identical to the schema of R.

 Set-difference: R - S returns a relation instance containing all tuples that

occur in R but not in S. The relations R and S must be union-compatible,

and the schema of the result is defined to be identical to the schema of R.

 Cross-product: R × S returns a relation instance whose schema contains

all the fields of R (in the same order as they appear in R) followed by all

the fields of S (in the same order as they appear in S). The result of R × S

contains one tuple 〈r, s〉 (the concatenation of tuples r and s) for each

pair of tuples r ∈ R, s ∈ S. The cross-product operation is sometimes

called Cartesian product.

We now illustrate these definitions through several examples.

The union of Hostel(S1) and Student(S2) is shown in Table 5.6.a Fields are

listed in order; field names are also inherited from S1. In general, fields of S2

may have different names; recall that we require only domains to match. Note

that the result is a set of tuples. Tuples that appear in both S1 and S2 appear

only once in S1 ∪ S2. Also, Student ∪ Mess is not a valid operation because

the two relations are not union-compatible. The intersection of S1 and S2 is

shown in Table 5.6.b, and the set-difference S1 - S2 is shown in Table 5.6.c

Relational Algebra

NOTES

Self-Instructional Material
54

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Table 5.6.a Result of Union Operation ‘Hostel U Student’

Table 5.6.b Result of Intersection Operation ‘Hostel ∩ Student’

Table 5.6.c Result of Set Difference Operation ‘Hostel - Student’

The result of the cross-product Hostel (S1) × Mess (R1) is shown in Table

5.7. The fields in 1 × R1 have the same domains as the corresponding fields

in R1 and S1. In Table 5.7, Room_No is listed in parentheses to emphasize

that it is not an inherited field name; only the corresponding domain is

inherited.

Table 5.7 Result of Cross-product Operation ‘Hostel X Mess’

Room_No Name Address Phone Age

1 RAM CHENNAI 9455123451 18

2 RAMESH GURGAON 9652431543 18
3 SUJIT ROHTAK 9156253131 20
4 SURESH KARAIKUDI 9156768971 18

5 NARESH MADURAI 9782918192 22

6 SWETA CHENNAI 9852617621 21

Room_No Name Address Phone Age

1 RAM CHENNAI 9455123451 18

4 SURESH KARAIKUDI 9156768971 18

Room_No Name Address Phone Age

2 RAMESH GURGAON 9652431543 18
3 SUJIT ROHTAK 9156253131 20

(Room_No) Name Address Phone Age (Room_No) Mess

1 RAM CHENNAI 9455123451 18 1 VEG

1 RAM CHENNAI 9455123451 18 5 NON-VEG

1 RAM CHENNAI 9455123451 18 6 VEG

1 RAM CHENNAI 9455123451 18 4 NON-VEG

5 NARESH MADURAI 9782918192 22 1 VEG

5 NARESH MADURAI 9782918192 22 5 NON-VEG

5 NARESH MADURAI 9782918192 22 6 VEG

5 NARESH MADURAI 9782918192 22 4 NON-VEG

6 SWETA CHENNAI 9852617621 21 1 VEG

6 SWETA CHENNAI 9852617621 21 5 NON-VEG

6 SWETA CHENNAI 9852617621 21 6 VEG

6 SWETA CHENNAI 9852617621 21 4 NON-VEG

4 SURESH KARAIKUDI 9156768971 18 1 VEG

4 SURESH KARAIKUDI 9156768971 18 5 NON-VEG

4 SURESH KARAIKUDI 9156768971 18 6 VEG

4 SURESH KARAIKUDI 9156768971 18 4 NON-VEG

 Relational Algebra
NOTES

 Self-Instructional Material
 55

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

5.5 Renaming

We introduce a renaming operator ρ for this purpose. The expression ρ(R (F),

E) takes an arbitrary relational algebra expression E and returns an instance of

a (new) relation called R. R contains the same tuples as the result of E, and has

the same schema as E, but some fields are renamed. The field names in

relation R are the same as in E, except for fields renamed in the renaming list

F.

To rename STUDENT relation to STUDENT1, we can use rename operator

like:

ρ(STUDENT1, STUDENT)

If you want to create a relation STUDENT_NAMES with STUD_NO and

NAME from STUDENT, it can be done using rename operator as:

ρ (STUDENT_NAMES, π (STUD_NO, NAME)(STUDENT))

It is customary to include some additional operators in the algebra, but they

can all be defined in terms of the operators that we have defined thus far. (In

fact, the renaming operator is only needed for syntactic convenience, and even

the ∩ operator is redundant; R ∩ S can be defined as R - (R - S).)

We will consider these additional operators, and their definition in terms of

the basic operators, in the next two subsections.

5.6 Joins

The join operation is one of the most useful operations in relational algebra

and is the most commonly used way to combine information from two or

more relations. Although a join can be defined as a cross-product followed by

selections and projections, joins arise much more frequently in practice than

plain cross-products. Joins have received a lot of attention, and there are

several variants of the join operation.

Conditional Joins The most general version of the join operation accepts a

join condition c and a pair of relation instances as arguments, and returns a

relation instance. The join condition is identical to a selection condition in

form. The operation is defined as follows:

For example: Select students whose Room_NO is greater than Stud_NO of

Hostel

HOSTEL ⋈c HOSTEL.Room_NO > STUDENT.Stud_NO STUDENT

Relational Algebra

NOTES

Self-Instructional Material
56

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Thus ⊲⊳ is defined to be a cross-product followed by a selection. In terms of

basic operators (cross product and selection):

σ (HOSTEL.Room_NO > STUDENT.Stud_NO)(HOSTEL X STUDENT)

Table 5.8 Conditional Join

Natural Join(⋈): It is a special case of equijoin in which equality condition

hold on all attributes which have same name in relations R and S (relations

on which join operation is applied). While applying natural join on two

relations, there is no need to write equality condition explicitly. Natural Join

will also return the similar attributes only once as their value will be same in

resulting relation.

Example: Select students whose Stud_NO is equal to Room_NO of Mess as:

STUDENT ⋈ MESS

Table 5.9 Natural Join

Natural Join is by default inner join because the tuples which does not satisfy

the conditions of join does not appear in result set.

Equijoin

Equijoin is a special case of conditional join where only equality condition

holds between a pair of attributes. As values of two attributes will be equal in

result of equijoin, only one attribute will be appeared in result.

The schema of the result of an equijoin contains the fields of R (with the

same names and domains as in R) followed by the fields of S that do not

appear in the join conditions. If this set of fields in the result relation includes

two fields that inherit the same name from R and S, they are unnamed in the

result relation.

Example: Select students whose Stud_NO is equal to Room_NO of Mess

Table

STUDENT ⋈ STUDENT.Stud_NO=MESS.Room_NO MESS

Room

No
Name Address Phone Age

Stud

No
Name Address Phone

Ag

e

2 RAMESH GURGAON 9652431543 18 1 RAM CHENNAI 9455123451 18

3 SUJIT ROHTAK 9156253131 20 1 RAM CHENNAI 9455123451 18

4 SURESH KARAIKUDI 9156768971 18 1 RAM CHENNAI 9455123451 18

Stud_No Name Address Phone Age Mess

1 RAM DELHI 9455123451 18 VEG

4 SURESH DELHI 9156768971 18 NON-VEG

 Relational Algebra
NOTES

 Self-Instructional Material
 57

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Table 5.10 Equijoin

Stud_

No
Name Address Phone Age

Room

_No
Mess

1 RAM DELHI 9455123451 18 1 VEG

4 SURESH DELHI 9156768971 18 4 NON-VEG

5.7 Division

Division operator A÷B can be applied if and only if:

 Attributes of B is proper subset of Attributes of A.

 The relation returned by division operator will have attributes = (All

attributes of A – All Attributes of B)

 The relation returned by division operator will return those tuples

from relation A which are associated to every B’s tuple.

Consider the relation MESS and ALL_MESS as given in Table 5.5.c and

Table 5.5.d above.

To apply division operator as

MESS ÷ ALL_MESS

 The operation is valid as attributes in ALL_MESS is a proper subset

of attributes in MESS.

 The attributes in resulting relation will have attributes

{Room_NO,Mess}-{Mess}=Room_NO

 The tuples in resulting relation will have those Room_NO which are

associated with all B’s tuple {VEG, NON-VEG}. Room_NO 5 is

associated to all tuples of B. So the resulting relation will be:

Table 5.11 Division

Room_No

5

Check Your Progress

1. Define: Relational Algebra

2. What is meant by Join?

3. What is called as Equijoin?

Relational Algebra

NOTES

Self-Instructional Material
58

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

5.8 Examples of Algebra overviews

One More Example of Relational Algebra Queries

(Q) Find the details of customers who have reserved The Hotel Conclave.

This query can be written as follows:

π cid (σhid = ‘H101’ (Reserves)) ⋈ CUSTOMER

 First, we execute the selection operation i.e. σhid = ‘H101’ (Reserves), then we

project the values of cid from the Reserves table. Finally, we perform join

operation with Customer relation based on the results of the above

operations.

Table 5.12.a Result of Selection operation

cid Hid day

C1001 H101 8.9.2019

C1324 H101 6.8.2019

C1001 H101 7.10.2019

 Table 5.12.b Result of Projection operation

cid

C1001

C1324

C1001

Table 5.12.c Final Result of the query

cid Cname mobile City

C1001 B. Raju 8976894567 Chennai

C1324 K. Kamal 9443478902 Madurai

C1001 B. Raju 8976894567 Chennai

5.9 Answers to Check Your Progress Questions

1. Relational algebra is a widely used procedural query language. It collects

instances of relations as input and gives occurrences of relations as

output. It uses various operations to perform this action.

2. The join operation is one of the most useful operations in relational

algebra and is the most commonly used way to combine information

from two or more relations

3. Equijoin is a special case of conditional join where only equality

condition holds between a pair of attributes. As values of two attributes

will be equal in result of equijoin, only one attribute will be appeared in

result.

 Relational Algebra
NOTES

 Self-Instructional Material
 59

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

5.10 Summary

• Relational algebra is a widely used procedural query language.

• Queries in algebra are composed using a collection of operators.

• The SELECT operation is used for selecting a subset of the tuples

according to a given selection condition.

• Sigma(s) Symbol denotes to choose tuples which meet the selection

condition.

• The cross-product operation is sometimes called Cartesian product.

• Equijoin is a special case of conditional join where only equality

condition holds between a pair of attributes.

• The standard operations on sets are also available in relational algebra

like union (U), intersection (n), set-difference (-), and cross-product

(×).

• The join operation is the most commonly used way to combine

information from two or more relations.

5.11 Keywords

• The relational algebra is a procedural query language.

• The relational algebra provides a set of operations that take one or

more relations as input and return a relation as an output.

• Practical query languages such as SQL are based on the relational

algebra

• The select, project, and rename operations are called unary

operations

• The select operation selects tuples that satisfy a given predicate.

• The project operation allows us to produce the relation.

5.12 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Relational algebra

2. What are the relational algebra operations?

3. What are the Unary relation operations?

4. What is mean by Equijoin?

5. What are all the set operations?

Long Answer Questions:

1. Describe the characteristics of various Unary Relational Operations

2. Write short-notes on the following:

a. UNION (U)

b. INTERSECTION (∩)

c. DIFFERENCE (-)

d. CARTESIAN PRODUCT (x)

3. Write an example of Relational Algebra Queries

5.13 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011.

Relational Calculus
NOTES

Self-Instructional Material
60

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

UNIT VI Relational Calculus

Structure

6.1 Introduction

6.2 Objectives

6.3 Relational Calculus

6.4 Tuple Relational Calculus

6.5 Domain Relational Calculus

6.6 Expressive Power of Algebra and Calculus

6.7 Answers to Check Your Progress Questions

6.8 Summary

6.9 Key Words

6.10 Self-Assessment Questions and Exercises

6.11 Further Readings

6.1 Introduction

Relational Calculus is a non-procedural query language unlike relational

algebra. Tuple Calculus provides only the description of the query but it does

not provide the methods to solve it. Thus, it explains what to do but not how

to do. Relational calculus exists in two forms and those are mentioned below:

 Tuple relational calculus

 Domain relational calculus

6.2 Objectives

This chapter imparts you the fundamentals of:

 Tuple Relational Calculus

 Domain Relational Calculus

6.3 Relational Calculus

Relational calculus is a query language which is non-procedural, and instead

of algebra, it uses mathematical predicate calculus. The relational calculus is

not the same as that of differential and integral calculus in mathematics but

takes its name from a branch of symbolic logic termed as predicate calculus.

When applied to databases, it is found in two forms. These are

 Tuple relational calculus which was originally proposed by Codd in

the year 1972 and

 Domain relational calculus which was proposed by Lacroix and

 Relational Calculus
NOTES

 Self-Instructional Material
 61

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Pirotte in the year 1977

In first-order logic or predicate calculus, a predicate is a truth-valued function

with arguments. When we replace with values for the arguments, the function

yields an expression, called a proposition, which will be either true or false.

6.4 Tuple Relational Calculus

Tuple Relational Calculus

A tuple variable is a variable that takes on tuples of a particular relation

schema as values. That is, every value assigned to a given tuple variable has

the same number and type of fields. A tuple relational calculus query has the

form { T | p(T) }, where T is a tuple variable and p(T) denotes a formula that

describes T ; we will shortly define formulas and queries rigorously. The

result of this query is the set of all tuples t for which the formula p(T)

evaluates to true with T = t. The language for writing formulas p(T) is thus at

the heart of TRC and is essentially a simple subset of first-order logic.

Syntax of TRC Queries

We now define these concepts formally, beginning with the notion of a

formula. Let Rel be a relation name, R and S be tuple variables, a an attribute

of R, and b an attribute of S. Let op denote an operator in the set {<,>,=,≤, ≥,

=}.

An atomic formula is one of the following:

a. R E Rel

b. R.a op S.b

c. R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q are

themselves formulas, and p(R) denotes a formula in which the variable R

appears: any atomic formula

¬ p, p V q, p ^ q, or p  q

 R(p(R)), where R is a tuple variable

 R(p(R)), where R is a tuple variable

We observe that every variable in a TRC formula appears in a sub-formula

that is atomic, and every relation schema specifies a domain for each field;

this observation ensures that each variable in a TRC formula has a well-

defined domain from which values for the variable are drawn. That is, each

variable has a well-defined type, in the programming language sense.

Informally, an atomic formula R ∈ Rel gives R the type of tuples in Rel, and

comparisons such as R.a op S.b and R.a op constant induce type restrictions

on the field R.a. If a variable R does not appear in an atomic formula of the

Relational Calculus
NOTES

Self-Instructional Material
62

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

form R E Rel (i.e., it appears only in atomic formulas that are comparisons),

we will follow the convention that the type of R is a tuple whose fields

include all (and only) fields of R that appear in the formula.

We will not define types of variables formally, but the type of a variable

should be clear in most cases, and the important point to note is that

comparisons of values having different types should always fail. (In

discussions of relational calculus, the simplifying assumption is often made

that there is a single domain of constants and that this is the domain associated

with each field of each relation.)

A TRC query is defined to be expression of the form {T | p(T)}, where T is the

only free variable in the formula p.

Semantics of TRC Queries

What does a TRC query mean? More precisely, what is the set of answer

tuples for a given TRC query? The answer to a TRC query {T | p(T)}, as we

noted earlier, is the set of all tuples t for which the formula p(T) evaluates to

true with variable T assigned the tuple value t. To complete this definition, we

must state which assignments of tuple values to the free variables in a formula

make the formula evaluate to true.

A query is evaluated on a given instance of the database. Let each free

variable in a formula F be bound to a tuple value. For the given assignment of

tuples to variables, with respect to the given database instance, F evaluates to

(or simply ‘is’) true if one of the following holds:

F is an atomic formula R  Rel, and R is assigned a tuple in the instance

of relation Rel.

 F is a comparison R.a op S.b, R.a op constant, or constant op R.a, and

the tuples assigned to R and S have field values R.a and S.b that make

the comparison true.

 F is of the form ¬p, and p is not true; or of the form p ^ q, and both p

and q are true; or of the form p V q, and one of them is true, or of the

form p  q and q is true whenever4 p is true.

 F is of the form R(p(R)), and there is some assignment of tuples to

the free variables in p(R), including the variable R,5 that makes the

formula p(R) true.

 F is of the form R(p(R)), and there is some assignment of tuples to

the free variables in p(R) that makes the formula p(R) true no matter

what tuple is assigned to R.

We now examine the following examples of TRC. For this purpose, the

following relation (as same in Table 5.1.a) is used.

 Relational Calculus
NOTES

 Self-Instructional Material
 63

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Table 6.1 ‘Customer’ Relation

cid Cname Mobile city

C1001 B. Raju 8976894567 Chennai

C2546 M. Sunil 8876921234 Salem

C1456 C. Kunal 9444324578 Chennai

C4578 K. Chitra 9897452123 Chennai

C3456 S. Bala 9789012134 Karaikudi

For example, to specify the range of a tuple variable C as the Customer

relation, we write:

Customer (C)

To express the query 'Find the set of all tuples C such that F(C) is true,' we

can write:

{C | F(C)}

Here, F is called a formula (well-formed formula, or wff in mathematical

logic). For example, to express the query 'Find the cid, cname, mobile and city

of all customers who are from Chennai', we can write:

{C | Customer (C) ∧ city = ‘Chennai’}

6.5 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain

of some attribute (e.g., the variable can be assigned an integer if it appears

in an attribute whose domain is the set of integers). A DRC query has the

form {〈x1, x2, . . . , xn〉 | p(〈x1,x2,.. ., xn〉)}, where each xi is either a

domain variable or a constant and p(〈x1,x2,.. ., xn〉) denotes a DRC

formula whose only free variables are the variables among the xi, 1 ≤ i ≤

n. The result of this query is the set of all tuples 〈x1, x2,.. .,xn〉 for

which the formula evaluates to true.

A DRC formula is defined in a manner that is very similar to the

definition of a TRC formula. The main difference is that the variables are

now domain variables. Let op denote an operator in the set {<, >, =, ≤, ≥,

=} and let X and Y be domain variables. An atomic formula in DRC is one

of the following:

〈x1,x2,...,xn〉 ∈ Rel, where Rel is a relation with n attributes; each xi, 1

≤ i ≤ n is either a variable or a constant.

X op Y

X op constant, or constant op X

A formula is recursively defined to be one of the following, where p and q

are themselves formulas, and p(X) denotes a formula in which the variable

X appears:

Relational Calculus
NOTES

Self-Instructional Material
64

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

any atomic formula

¬ p, p V q, p  q, or p  q

 X(p(X)), where X is a domain variable

 X (p(X)), where X is a domain variable

6.6 Expressive Power of Algebra and Calculus

Relational calculus is an alternative to relational algebra. In contrast to the

algebra, which is procedural, the calculus is nonprocedural, or declarative, in

that it allows us to describe the set of answers without being explicit about

how they should be computed. Relational calculus has had a big influence on

the design of commercial query languages such as SQL and, especially,

Query-by-Example (QBE).

The variant of the calculus that we present in detail is called the tuple

relational calculus (TRC). Variables in TRC take on tuples as values. In

another variant, called the domain relational calculus (DRC), the variables

range over field values. TRC has had more of an influence on SQL, while

DRC has strongly influenced QBE

6.7 Answers to Check Your Progress Questions

1. Relational calculus is a query language which is non-procedural, and

 instead of algebra, it uses mathematical predicate calculus.

2. A DRC formula is defined in a manner that is very similar to the

 definition of a TRC formula. The main difference is that the variables

 are now domain variables.

3. A TRC query is defined to be expression of the form {T | p(T)},

 where T is the only free variable in the formula p.

6.8 Summary

• The tuple relational calculus and domain relational calculus are

nonprocedural.

• The relational calculus uses predicate logic to define the result desired

without giving any specific algebraic procedure for obtaining that

result

• A DRC formula is defined in a manner that is very similar to the

definition of a TRC formula.

• Relational calculus is an alternative to relational algebra.

• The variant of the calculus that we present in detail is called the tuple

relational calculus (TRC).

Check Your Progress

1. Define : Relational calculus

2. Difference between DRC and TRC

3. How to express TRC Terms?

 Relational Calculus
NOTES

 Self-Instructional Material
 65

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

6.9 Keywords

• Relational calculus is a query language which is non-procedural

• A TRC query is defined to be expression of the form {T | p(T)}.

• Relational calculus has had a big influence on the design of

commercial query languages such as SQL and, especially, Query-by-

Example (QBE).

6.10 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Relational Calculus

2. What is TRC?

3. State the syntax of TRC Queries.

4. What is DRC?

Long Answer Questions:

1. Explain the concepts of TRC and DRC

6.11 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011.

Form of Basic SQL Query
NOTES

Self-Instructional Material
66

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

BLOCK – III

SQL QUERY

UNIT VII FORM OF BASIC SQL QUERY

Structure

7.1 Introduction

7.2 Objectives

7.3 Basics of SQL Queries

7.4 Examples of Basic SQL Queries

7.5 Introduction to Nested Queries

7.6 Correlated Nested Queries Set

7.7 Comparison Operators

7.8 Aggregative Operators

7.9 NULL Values

7.10 Comparison using NULL Values

7.11 Logical connectivity’s AND, OR and NOT

7.12 Outer Join

7.13 Disallowing NULL Values

7.14 PL/SQL

7.15 Complex Integrity Constraints in SQL Triggers and Active Databases

7.16 Answers to Check Your Progress Questions

7.17 Summary

7.18 Key Words

7.19 Self-Assessment Questions and Exercises

7.20 Further Readings

7.1 Introduction

SQL stands for Structured Query Language. SQL is a standard language for

accessing and manipulating databases. Structure Query Language (SQL) is a

database query language used for storing and managing data in Relational

DBMS. SQL was the first commercial language introduced for E.F

Codd's Relational model of database. Today almost all RDBMS (MySql,

Oracle, Infomix, Sybase, MS Access) use SQL as the standard database query

language. SQL is used to perform all types of data operations in RDBMS.

7.2 Objectives

After reading this chapter, you will understand the:

 Fundamentals of SQL

 Query formation using SQL

 Operators used in SQL

 Nested queries and Joins

 PL/SQL

 Form of SQL Query
NOTES

 Self-Instructional Material
 67

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

7.3 Basics of SQL Queries

Structured Query Language (SQL) is a standard Database language which is

used to create, maintain and retrieve the relational database. SQL is a domain-

specific language used in programming and designed for managing data held

in a relational database management system, or for stream processing in a

relational data stream management system. We shall discuss extensively about

each and every SQL queries in the following sections.

7.4 Examples of Basic SQL Queries

This section presents the syntax of a simple SQL query and explains its

meaning through a conceptual evaluation strategy. A conceptual evaluation

strategy is a way to evaluate the query that is intended to be easy to

understand, rather than efficient. A DBMS would typically execute a query in

a different and more efficient way.

The SQL CREATE TABLE Statement

The CREATE TABLE statement is used to create a new table in a database.

Syntax

CREATE TABLE table_name (

 column1 datatype,

 column2 datatype,

 column3 datatype,

);

The column parameters specify the names of the columns of the table.

The datatype parameter specifies the type of data the column can hold (e.g.

varchar, integer, date, etc.).

The SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

INSERT INTO Syntax

It is possible to write the INSERT INTO statement in two ways.

The first way specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

If you are adding values for all the columns of the table, you do not need to

specify the column names in the SQL query. However, make sure the order of

the values is in the same order as the columns in the table. The INSERT INTO

syntax would be as follows:

Form of Basic SQL Query
NOTES

Self-Instructional Material
68

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

INSERT INTO table_name

VALUES (value1, value2, value3, ...);

The basic form of an SQL query is as follows:

SELECT [DISTINCT] select-list FROM from-list WHERE qualification

Such a query intuitively corresponds to a relational algebra expression

involving selections, projections, and cross-products. Every query must have a

SELECT clause, which specifies columns to be retained in the result, and a

FROM clause, which specifies a cross-product of tables. The optional

WHERE clause specifies selection conditions on the tables mentioned in the

FROM clause. Let us consider a simple query.

The relations discussed in the chapter 5 are considered, for explaining the

SQL Queries:

Table 7.1 a. ‘Customer’ Relation

cid Cname mobile city

C1001 B. Raju 8976894567 Chennai

C2546 M. Sunil 8876921234 Salem

C1456 C. Kunal 9444324578 Chennai

C1324 K. Kamal 9443478902 Madurai

C4578 K. Chitra 9897452123 Chennai

C3456 S. Bala 9789012134 Karaikudi

C4896 K. Kamal 9443478902 Madurai

Table 7.1 b. ‘Hotel’ Relation

hid hname Rate

H101 The Conclave 5000.00

H124 Heritage Inn 6750.00

H456 The Holidays 4300.00

Table 7.1 c. ‘Reserves’ Relation

cid hid Day

C1001 H101 8.9.2019

C1456 H456 17.8.2019

C4578 H124 4.9.2019

C1324 H101 6.8.2019

C1001 H101 7.10.2019

C2456 H456 14.9.2019

C1456 H124 28.8.2019

(Q 7.1) Find the names and mobile numbers of all customers.

SELECT DISTINCT C.cname, C.mobile FROM Customer C

 Form of SQL Query
NOTES

 Self-Instructional Material
 69

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

The answer is a set of rows, each of which is a pair 〈cname, mobile〉. If two

or more customers have the same name and mobile number, the answer still

contains just one pair with that name and mobile number. This query is

equivalent to applying the projection operator of relational algebra.

The answer to this query with and without the keyword DISTINCT on the

relation ‘Customer’ is shown in Table 7.2.a and 7.2.b. The only difference is

that the tuple for K. Kamal appears twice if DISTINCT is omitted; this is

because there are two customers called K. Kamal and same mobile number.

(Q 7.2) Find all customers from Chennai.

SELECT C.cname, C.mobile, c.city FROM Customer AS C WHERE c.city =

‘Chennai’

We now consider the syntax of a basic SQL query in more detail.

 The from-list in the FROM clause is a list of table names. A table

name can be followed by a range variable; a range variable is

particularly useful when the same table name appears more than once

in the from-list.

 The select-list is a list of (expressions involving) column names of

tables named in the from-list. Column names can be prefixed by a

range variable.

 The qualification in the WHERE clause is a Boolean combination

(i.e., an expression using the logical connectives AND, OR, and

NOT) of conditions of the form expression op expression, where op is

one of the comparison operators {<, <=, =, <>, >=, >}. An

expression is a column name, a constant, or an (arithmetic or string)

expression.

 The DISTINCT keyword is optional. It indicates that the table

computed as an answer to this query should not contain duplicates,

that is, two copies of the same row. The default is that duplicates are

not eliminated.

(Q 7.3) Find the names of customers who reserved hotel with id ‘H101’.

It can be expressed in SQL as follows:

SELECT C.cname FROM Customer C, Reserves R WHERE C.cid = R.cid

AND R.hid= ‘H101’

Let us compute the answer to this query on the ‘Reserves (R)’ relation and

‘Customer (C)’ relation. The first step is to construct the cross-product S × R,

which is shown in Table 7.2.

Table 7.2 Result of C X R

cid Cname mobile city cid hid day

C1001 B. Raju 8976894567 Chennai C1001 H101 8.9.2019

C1324 K. Kamal 9443478902 Madurai C1324 H101 6.8.2019

C4578 K. Chitra 9897452123 Chennai C1001 H101 7.10.2019

Form of Basic SQL Query
NOTES

Self-Instructional Material
70

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The second step is to apply the qualification C.cid = R.cid AND R.hid=H101.

(Note that the first part of this qualification requires a join operation.) This

step eliminates the last row from the instance shown in Table 7.2. The third

step is to eliminate unwanted columns; only cname appears in the SELECT

clause. This step leaves us with the result shown in Table 7.2, which is a table

with a single column and, as it happens, just one row.

Table 7.3 Result to Query

Cname

B. Raju

K. Kamal

 (Q 7.4) Find the mobile number of customers who have reserved hotel

H456.

SELECT C.mobile FROM Customer C, Reserves R WHERE C.cid = R.cid

AND R.hid= ‘H456’

(Q 7.5) Find the names of customers who have reserved at least one hotel.

SELECT C.cname FROM Customer C, Reserves R WHERE C.cid = R.cid

Expressions and Strings in the SELECT Command

SQL supports a more general version of the select-list than just a list of

columns. Each item in a select-list can be of the form expression AS column

name, where expression is any arithmetic or string expression over column

names (possibly prefixed by range variables) and constants.

(Q 7.6) Find the mobile numbers of customers who are coming from the city

name starts with letter ‘C’.

SELECT C.mobile FROM Customer C WHERE C.city LIKE ‘C%’

 UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query

form presented earlier. Since the answer to a query is a multiset of rows, it is

natural to consider the use of operations such as union, intersection, and

difference. SQL supports these operations under the names UNION,

INTERSECT, and EXCEPT.

SQL also provides other set operations: IN (to check if an element is in a

given set), op ANY, op ALL (to compare a value with the elements in a given

set, using comparison operator op), and EXISTS

(to check if a set is empty). IN and EXISTS can be prefixed by NOT, with the

obvious modification to their meaning.

 Form of SQL Query
NOTES

 Self-Instructional Material
 71

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

(Q 7.7) Find the names of customers who have reserved ‘H101’ or ‘H456’.

SELECT C.cname FROM Customer C, Reserves R WHERE C.cid =

R.cid AND (C.hid = ‘H101’ OR C.hid = ‘H456’)

This query is easily expressed using the OR connective in the WHERE clause.

However, the following query, which is identical except for the use of ‘and’

rather than ‘or’ in the English version, turns out to be much more difficult:

(Q 7.8) Find the names of Customer who have reserved both ‘H101’ and

‘H456’.

If we were to just replace the use of OR in the previous query by AND, in

analogy to the English statements of the two queries, we would retrieve the

names of customers who have reserved a room in both H101 and H456.

SELECT C.cname FROM Customer C, Reserves R WHERE C.cid =

R.cid AND (C.hid = ‘H101’ AND C.hid = ‘H456’)

(Q 7.9) Find the cid of all customers who have reserved ‘H101’ but not

‘H456’.

SELECT C.cname FROM Customer C, Reserves R WHERE C.cid =

R.cid AND C.hid = ‘H101’ EXCEPT (SELECT C1.cname FROM

Customer C1, Reserves R1 WHERE C1.cid = R1.cid AND C1.hid =

‘H456’)

Note that UNION, INTERSECT, and EXCEPT can be used on any two tables

that are union-compatible, that is, have the same number of columns and the

columns, taken in order, have the same types.

7.5 Introduction to Nested Queries

NESTED QUERIES

A nested query is a query that has another query embedded within it; the

embedded query is called a subquery.

Introduction to Nested Queries

As an example, let us rewrite the following query, which we discussed earlier,

using a nested subquery:

(Q 7.10) Find the names of customers who have reserved ‘H101’.

SELECT C.cname

FROM Customer C

WHERE C.cid IN (SELECT R.cid

FROM Reserves R

WHERE R.hid = ‘H101’)

Form of Basic SQL Query
NOTES

Self-Instructional Material
72

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The nested subquery computes the (multi) set of cids for customers who have

reserved hotel H101, and the top-level query retrieves the names of customers

whose cid is in this set. The IN operator allows us to test whether a value is in

a given set of elements; an SQL query is used to generate the set to be tested.

Notice that it is very easy to modify this query to find all customers who have

not reserved hotel ‘H101’ — we can just replace IN by NOT IN→

SELECT C.cname

FROM Customer C

WHERE C.cid NOT IN (SELECT R.cid

FROM Reserves R

WHERE R.hid = ‘H101’)

(Q 7.11) Find the names of customers who have reserved a hotel named

‘The Conclave’.

SELECT C.cname

FROM Customer C

WHERE C.cid IN (SELECT R.cid

FROM Reserves R

WHERE R.hid IN (SELECT H.hid

FROM Hotel H

WHERE H.hname =‘The Conclave’)

 The innermost subquery finds the set of hids of the hotel ‘The Conclave’

(H101).

 The subquery one level above finds the set of cids of Customer who have

reserved H101 (The Conclave).

 The top-level query finds the names of Customer whose cid is in this set

of cids.

(Q 7.12) Find the names of Customers who have not reserved ‘Heritage

Inn’.

SELECT C.cname

FROM Customer C

WHERE C.cid NOT IN (SELECT R.cid

FROM Reserves R

WHERE R.hid IN (SELECT H.hid

FROM Hotel H

WHERE H.hname =‘Heritage Inn’)

7.6 Correlated Nested Queries Set

In the nested queries that we have seen thus far, the inner subquery has been

completely independent of the outer query. In general the inner subquery

could depend on the row that is currently being examined in the outer query

(in terms of our conceptual evaluation strategy). Let us rewrite the following

query once more:

 Form of SQL Query
NOTES

 Self-Instructional Material
 73

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

(Q 7.13) Find the names of Customers who have reserved Hotel ‘H101’.

SELECT C.cname FROM Customer C WHERE EXISTS (SELECT * FROM

Reserves R WHERE R.hid = ‘H101’AND R.cid = C.cid)

The EXISTS operator is another set comparison operator, such as IN. It

allows us to test whether a set is nonempty. Thus, for each Customer row S,

we test whether the set of Reserves rows R such that R.hid = H101 AND

C.cid = R.cid is nonempty. If so, Customer C has reserved hotel ‘H101’, and

we retrieve the name. The subquery clearly depends on the current row C and

must be re-evaluated for each row in Customer. The occurrence of C in the

subquery (in the form of the literal C.cid) is called a correlation, and such

queries are called correlated queries.

7.7 Comparison Operators

Set-Comparison Operators

We have already seen the set-comparison operators EXISTS, IN, and

UNIQUE, along with their negated versions. SQL also supports op ANY and

op ALL, where op is one of the arithmetic comparison operators {<, <=, =,

<>, >=, >}. (SOME is also available, but it is

just a synonym for ANY.)

(Q 7.14) Find Hotel whose rate is lesser than Hotel ‘The Conclave’.

SELECT H.hname

FROM Hotel H

WHERE H.rate < ANY (SELECT H1.rate

FROM Hotel H1

WHERE H1.hname = ‘The Conclave’)

 Table 7.14 Result of the Query (Q 7.14)

Hid hname Rate

H456 The Holidays 4300.00

(Q 7.15) Find the Hotel with the highest rate.

SELECT H.hname

FROM Hotel H

WHERE H.rate >= ALL (SELECT H1.rate FROM Hotel H1)

The subquery computes the set of all rate values in Hotel relation. The outer

WHERE condition is satisfied only when H.rate is greater than or equal to

each of these rate values, i.e., when it is the largest rate value.

Form of Basic SQL Query
NOTES

Self-Instructional Material
74

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

In the Hotel relation, the condition is only satisfied for highest rate is Rs.

6750.00, and the answer includes the hnames of Hotels with this rating, i.e.,

Heritage Inn.

hname

Heritage Inn

Note that IN and NOT IN are equivalent to = ANY and <> ALL,

respectively.

7.8 Aggregative Operators

We now consider a powerful class of constructs for computing aggregate

values such as MIN and SUM. These features represent a significant

extension of relational algebra. SQL supports five aggregate operations, which

can be applied on any column, say A, of a relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A

column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A

column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A

column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

For explaining the aggregate function the following relation is used:

 Student (regno, name, class, age, mobile, address, percentage)

(Q 7.16) Find the average age of all Students.

SELECT AVG (S.age) FROM Student S

(Q 7.17) Find the average age of Students of a particular class ‘II UG

Physics’.

SELECT AVG (S.age) FROM Student S WHERE S.class = ‘II UG

Physics’

(Q 7.18) Find the name and age of the oldest Student of II UG Physics.

Consider the following attempt to answer this query:

SELECT S.name, MAX (S.age) FROM Student S WHERE S.class =

‘II UG Physics’

The intent is for this query to return not only the maximum age but

also the name of the Student having that age. However, this query is

illegal in SQL—if the SELECT clause uses an aggregate operation,

 Form of SQL Query
NOTES

 Self-Instructional Material
 75

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

then it must use only aggregate operations unless the query contains a

GROUP BY clause→ (The intuition behind this restriction should

become clear when we discuss the GROUP BY clause in later

Section). Thus, we cannot use MAX (S.age)

as well as S.name in the SELECT clause.

We have to use a nested query to compute the desired answer to 7.18:

SELECT S.name, S.age

FROM Student S

WHERE S.age = (SELECT MAX (S2.age)

 FROM Student S2)

Observe that we have used the result of an aggregate operation in the

subquery as an argument to a comparison operation. Strictly speaking, we are

comparing an age value with the result of the subquery, which is a relation.

However, because of the use of the aggregate operation, the subquery is

guaranteed to return a single tuple with a single field, and SQL converts such

a relation to a field value for the sake of the comparison.

(Q 7.19) Count the number of Students.

SELECT COUNT (*) FROM Student S

We can think of * as shorthand for all the columns (in the cross-product of the

from list in the FROM clause). Contrast this query with the following query,

which computes the number of distinct Student names.

(Q 7.20) Find the names of Student who are older than the oldest Student

SELECT S.name

FROM Student S

WHERE S.age > (SELECT MAX (S2.age)

FROM Student S2)

The above answer could alternatively be written as follows:

SELECT S.name FROM Student S

WHERE S.age > ALL (SELECT S2.age

FROM Student S2)

The GROUP BY and HAVING Clauses

we want to apply aggregate operations to each of a number of groups of rows

in a relation, where the number of groups depends on the relation instance

(i.e., is not known in advance). For example, consider the following query.

(Q 7.21) Find the age of the youngest Student.

SELECT MIN (S.age)

FROM Student S

Form of Basic SQL Query
NOTES

Self-Instructional Material
76

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The GROUP BY clause extension includes an optional HAVING clause that

can be used to specify qualifications over groups (for example, we may only

be interested in percentage > 60.0). The general form of an SQL query with

these extensions is:

SELECT[DISTINCT] select-list

FROM from-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

Using the GROUP BY clause, we can write Q 7.21 as follows:

SELECT S.rating, MIN (S.age)

FROM Student S

GROUP BY S.percentage

Let us consider some important points concerning the new clauses:

The select-list in the SELECT clause consists of (1) a list of column names

and (2) a list of terms having the form aggop (column-name) AS new-name.

The optional AS new-name term gives this column a name in the table that is

the result of the query. Any of the aggregation operators can be used for

aggop. Every column that appears in (1) must also appear in grouping-list.

The reason is that each row in the result of the query

corresponds to one group, which is a collection of rows that agree on the

values of columns in grouping-list. If a column appears in list (1), but not in

grouping-list, it is not clear what value should be assigned to it in an answer

row.

The expressions appearing in the group-qualification in the HAVING clause

must have a single value per group. The intuition is that the HAVING clause

determines whether an answer row is to be generated for a given group.

Therefore, a column appearing in the group-qualification must appear as the

argument to an aggregation operator, or it must also appear in grouping-list.

If the GROUP BY clause is omitted, the entire table is regarded as a single

group. We will explain the semantics of such a query through an example.

Consider the query:

(Q 7.22) Find the age of the youngest Student who is eligible to vote (i.e., is

at least 18 years old) for each top percentage with at least two such Student.

SELECT S.rating, MIN (S.age) AS minage

FROM Student S

WHERE S.age >= 18

GROUP BY S.percentage

HAVING COUNT (*) > 1

 Form of SQL Query
NOTES

 Self-Instructional Material
 77

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

7.9 Introduction to Null Values

NULL VALUES

We have assumed that column values in a row are always known. In practice

column values can be unknown. For example, when a Student, admitted new

to a class, he may not yet have a percentage. Since the definition for the

Student table has a percentage column, what row should we insert for that

student? What is needed here is a special value that denotes unknown.

SQL provides a special column value called null to use in such situations. We

use null when the column value is either unknown or inapplicable. The

presence of null values complicates many issues, and we consider the impact

of null values on SQL in this section.

7.10 Comparison using NULL Values

Comparisons Using Null Values

Consider a comparison such as percentage = 80.0. If this is applied to the row

for an, is this condition true or false? Since new student’s percentage is

unknown, it is reasonable to say that this comparison should evaluate to the

value unknown. In fact, this is the case for the comparisons percentage > 80.0

and percentage < 80.0 as well. Perhaps less obviously, if we compare two

null values using <, >, =, and so on, the result is always unknown. For

example, if we have null in two distinct rows of the Student relation, any

comparison returns unknown. SQL also provides a special comparison

operator IS NULL to test whether a column value is null; for example, we can

say percentage IS NULL, which would evaluate to true on the row

representing new student. We can also say percentage IS NOT NULL, which

would evaluate to false on the row for new student.

7.11 Logical connectivity AND, OR, and NOT

There are three Logical Operators namely, AND, OR, and NOT. These

operators compare two conditions at a time to determine whether a row can be

selected for the output. When retrieving data using a SELECT statement, you

can use logical operators in the WHERE clause, which allows you to combine

more than one condition.

Table 7.15 Logical Operators and its working in SQL queries

Logical

Operators
Description

OR
For the row to be selected at least one of the

conditions must be true.

AND
For a row to be selected all the specified

conditions must be true.

NOT
For a row to be selected the specified condition

must be false.

Form of Basic SQL Query
NOTES

Self-Instructional Material
78

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Nested Logical Operators:

You can use multiple logical operators in an SQL statement. When you

combine the logical operators in a SELECT statement, the order in which the

statement is processed is

1) NOT

2) AND

3) OR

Now, what about boolean expressions such as percentage = 80.0 OR age < 23

and percentage = 80.0 AND age < 23? Considering the row for that new

student again, because age < 23, the first expression evaluates to true

regardless of the value of percentage, but what about the second? We can

only say unknown. But this example raises an important point—once we have

null values, we use to define the logical operators AND, OR, and NOT using a

three-valued logic in which expressions evaluate to true, false, or unknown.

We extend the usual interpretations of AND, OR, and NOT to cover the case

when one of the arguments is unknown as follows. The expression NOT

unknown is defined to be unknown. OR of two arguments evaluates to true if

either argument evaluates to true, and to unknown if one argument evaluates

7.12 Outer Join

In the SQL outer JOIN all the content of the both tables are integrated

together either they are matched or not.

Outer join of three types:

1.Left outer join (also known as left join): this join returns all the rows from

left table combine with the matching rows of the right table. If you get no

matching in the right table it returns NULL values.

2.Right outer join (also known as right join): this join returns all the rows

from right table are combined with the matching rows of left table .If you get

no column matching in the left table .it returns null value.

3. Full Outer Join returns unmatched rows from both tables.

Figure 7.1 Various forms of Joins

 Form of SQL Query
NOTES

 Self-Instructional Material
 79

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

7.13 Disallowing NULL Values

To disallow NULL values in any of the columns, add NOT NULL to the

definition of each one.

This enforces a field to always contain a value, which means that you cannot

insert a new record, or update a record without adding a value to this field.

CREATE TABLE Student (ID Number Primary Key, Name varchar2 (25)

NOT NULL, Mobile Number(10) NOT NULL);

The above CREATE statement enforces that, ID is the primary key attribute

and values of both Name and Mobile should not be a NULL.

7.14 PL/SQL

PL/SQL Introduction

PL/SQL is a block structured language that enables developers to combine the

power of SQL with procedural statements.All the statements of a block are

passed to oracle engine all at once which increases processing speed and

decreases the traffic.

Disadvantages of SQL:

 SQL doesn’t provide the programmers with a technique of condition

checking, looping and branching.

 SQL statements are passed to Oracle engine one at a time which

increases traffic and decreases speed.

 SQL has no facility of error checking during manipulation of data.

Features of PL/SQL:

1. PL/SQL is basically a procedural language, which provides the

functionality of decision making, iteration and many more features of

procedural programming languages.

2. PL/SQL can execute a number of queries in one block using single

command.

3. One can create a PL/SQL unit such as procedures, functions,

packages, triggers, and types, which are stored in the database for

reuse by applications.

4. PL/SQL provides a feature to handle the exception which occurs in

PL/SQL block known as exception handling block.

5. Applications written in PL/SQL are portable to computer hardware or

operating system where Oracle is operational.

6. PL/SQL Offers extensive error checking.

Form of Basic SQL Query
NOTES

Self-Instructional Material
80

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Differences between SQL and PL/SQL:

SQL PL/SQL

SQL is a single query that is used

to perform DML and DDL

operations.

PL/SQL is a block of codes that used

to write the entire program blocks/

procedure/ function, etc.

It is declarative, that defines what

needs to be done, rather than how

things need to be done.

PL/SQL is procedural that defines

how the things needs to be done.

Execute as a single statement. Execute as a whole block.

Mainly used to manipulate data. Mainly used to create an application.

Cannot contain PL/SQL code in it.

It is an extension of SQL, so it can

contain SQL inside it.

Structure of PL/SQL Block:

PL/SQL extends SQL by adding constructs found in procedural languages,

resulting in a structural language that is more powerful than SQL. The basic

unit in PL/SQL is a block. All PL/SQL programs are made up of blocks,

which can be nested within each other.

Typically, each block performs a logical action in the program. A block has

the following structure:

DECLARE
 declaration statements;

BEGIN
 executable statements

EXCEPTIONS
 exception handling statements

END;

 Declare section starts with DECLARE keyword in which variables,

constants, records as cursors can be declared which stores data

temporarily. It basically consists definition of PL/SQL identifiers.

This part of the code is optional.

 Execution section starts with BEGIN and ends

with END keyword.This is a mandatory section and here the program

logic is written to perform any task like loops and conditional

statements. It supports all DML commands, DDLcommands and

SQL*PLUS built-in functions as well.

https://en.wikipedia.org/wiki/Data_manipulation_language
https://en.wikipedia.org/wiki/Data_definition_language

 Form of SQL Query
NOTES

 Self-Instructional Material
 81

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

 Exception section starts with EXCEPTION keyword.This section is

optional which contains statements that are executed when a run-time

error occurs. Any exceptions can be handled in this section.

PL/SQL identifiers

There are several PL/SQL identifiers such as variables, constants, procedures,

cursors, triggers etc.

1. Variables:

Like several other programming languages, variables in PL/SQL must

be declared prior to its use. They should have a valid name and data

type as well.

Syntax for declaration of variables:

variable_name datatype [NOT NULL := value];

SQL> SET SERVEROUTPUT ON;

SQL> DECLARE

 var1 INTEGER;

 var2 REAL;

 var3 varchar2(20) ;

BEGIN

 null;

END;

/

Output:

PL/SQL procedure successfully completed.

Explanation:
 SET SERVEROUTPUT ON: It is used to display the buffer

used by the dbms_output.

 var1 INTEGER : It is the declaration of variable,

named var1 which is of integer type. There are many other

data types that can be used like float, int, real, smallint, long

etc. It also supports variables used in SQL as well like

NUMBER(prec, scale), varchar, varchar2 etc.

 PL/SQL procedure successfully completed.: It is displayed

when the code is compiled and executed successfully.

 Slash (/) after END;: The slash (/) tells the SQL*Plus to

execute the block.

INITIALISING VARIABLES:

The variables can also be initialised just like in other programming languages.

SQL> SET SERVEROUTPUT ON;

SQL> DECLARE

 var1 INTEGER := 2 ;

 var3 varchar2(20) := 'I Love RDBMS' ;

 BEGIN

 null;

 END;

Form of Basic SQL Query
NOTES

Self-Instructional Material
82

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 /

Output:

PL/SQL procedure successfully completed.

Explanation:
 Assignment operator (:=) : It is used to assign a value to a

variable.

2. Displaying Output:

The outputs are displayed by using DBMS_OUTPUT which is a

built-in package that enables the user to display output, debugging

information, and send messages from PL/SQL blocks, subprograms,

packages, and triggers.

Let us see an example to see how to display a message using PL/SQL :

SQL> SET SERVEROUTPUT ON;

SQL> DECLARE

 var varchar2(40) := 'I love GeeksForGeeks' ;

 BEGIN

 dbms_output.put_line(var);

 END;

 /

Output:

I love GeeksForGeeks

PL/SQL procedure successfully completed.

Explanation:
 dbms_output.put_line : This command is used to direct the

PL/SQL output to a screen.

3. Using Comments:

Like in many other programming languages, in PL/SQL also,

comments can be put within the code which has no effect in the code.

There are two syntaxes to create comments in PL/SQL :

 Single Line Comment: To create a single line comment , the

symbol – – is used.

 Multi Line Comment: To create comments that span over

several lines, the symbol /* and */ is used.

Example to show how to create comments in PL/SQL :

SQL> SET SERVEROUTPUT ON;

SQL> DECLARE

 -- I am a comment, so i will be ignored.

 var varchar2(40) := 'I love RDBMS' ;

 Form of SQL Query
NOTES

 Self-Instructional Material
 83

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

 BEGIN

 dbms_output.put_line(var);

 END;

 /

Output:

I love RDBMS

PL/SQL procedure successfully completed.

4. Taking input from user:

Just like in other programming languages, in PL/SQL also, we can

take input from the user and store it in a variable. Let us see an

example to show how to take input from users in PL/SQL:

SQL> SET SERVEROUTPUT ON;

SQL> DECLARE

 -- taking input for variable a

 a number := &a;

 -- taking input for variable b

 b varchar2(30) := &b;

 BEGIN

 null;

 END;

 /

Output:

Enter value for a: 24

old 2: a number := &a;

new 2: a number := 24;

Enter value for b: 'RDBMS'

old 3: b varchar2(30) := &b;

new 3: b varchar2(30) := ' RDBMS ';

PL/SQL procedure successfully completed.

5. (***) Let us see an example on PL/SQL to demonstrate all above

concepts in one single block of code.

--PL/SQL code to print sum of two numbers taken from the user.

SQL> SET SERVEROUTPUT ON;

SQL> DECLARE

 -- taking input for variable a

 a integer := &a ;

 -- taking input for variable b

Form of Basic SQL Query
NOTES

Self-Instructional Material
84

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 b integer := &b ;

 c integer ;

 BEGIN

 c := a + b ;

 dbms_output.put_line('Sum of '||a||' and '||b||' is = '||c);

 END;

 /

Enter value for a: 2

Enter value for b: 3

Sum of 2 and 3 is = 5

PL/SQL procedure successfully completed.

7.15 Complex Integrity Constraints in SQL Triggers and Active

Databases.

TRIGGERS

A trigger is a procedure that is automatically invoked by the DBMS in

response to specified changes to the database, and is typically specified by the

DBA. A database that has a set of associated triggers is called an active

database. A trigger description contains three parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is activated.

Action: A procedure that is executed when the trigger is activated and its

condition is true.

A trigger can be thought of as a ‘daemon’ that monitors a database, and is

executed when the database is modified in a way that matches the event

specification. An insert, delete or update statement could activate a trigger,

regardless of which user or application invoked the activating statement; users

may not even be aware that a trigger was executed as a side effect of their

program.

A condition in a trigger can be a true/false statement (e.g., all customers

balance are less than Rs. 1,000) or a query. A query is interpreted as true if the

answer set is nonempty, and false if the query has no answers. If the condition

part evaluates to true, the action associated with the trigger is executed.

A trigger action can examine the answers to the query in the condition part of

the trigger, refer to old and new values of tuples modified by the statement

Check Your Progress

4. Define: SQL Queries

5. What are Nested Queries?

6. What is meant by NULL Value?

 Form of SQL Query
NOTES

 Self-Instructional Material
 85

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

activating the trigger, execute new queries, and make changes to the database.

In fact, an action can even execute a series of data-definition commands (e.g.,

create new tables, change authorizations) and transaction-oriented commands

(e.g., commit), or call host language procedures.

An important issue is when the action part of a trigger executes in relation to

the statement that activated the trigger. For example, a statement that inserts

records into the Students table may activate a trigger that is used to maintain

statistics on how many students younger than 18 are inserted at a time by a

typical insert statement. Depending on exactly what the trigger does, we may

want its action to execute before changes are made to the Students table, or

after: a trigger that initializes a variable used to count the number of

qualifying insertions should be executed before, and a trigger that executes

once per qualifying inserted record and increments the variable

should be executed after each record is inserted (because we may want to

examine the values in the new record to determine the action).

Examples of Triggers in SQL

The examples shown below, written using Oracle 8 syntax for defining

triggers, illustrate the basic concepts behind triggers. The trigger called init

count initializes a counter variable before every execution of an INSERT

statement that adds tuples to the Students relation. The trigger called incr

count increments the counter for each inserted tuple that satisfies the condition

age < 18.

CREATE TRIGGER init count BEFORE INSERT ON Students /* Event */

DECLARE

count INTEGER;

BEGIN /* Action */

count := 0;

END

CREATE TRIGGER incr count AFTER INSERT ON Students/* Event */

WHEN (new.age < 18) /* Condition; ‘new’ is just-inserted tuple */

FOR EACH ROW

BEGIN /* Action; a procedure in Oracle’s PL/SQL syntax */

count := count + 1;

END

The first example trigger executes before the activating statement, and the

other example executes after. A trigger can also be scheduled to execute

instead of the activating statement, or in deferred fashion, at the end of the

transaction containing the activating statement, or in asynchronous fashion, as

part of a separate transaction.

The example illustrates another point about trigger execution: A user must be

able to specify whether a trigger is to be executed once per modified record or

once per activating statement. If the action depends on individual changed

records, for example, we have to examine the age field of the inserted

Students record to decide whether to increment the count, the triggering event

should be defined to occur for each modified record; the FOR EACH ROW

clause is used to do this. Such a trigger is called a row-level trigger. On the

Form of Basic SQL Query
NOTES

Self-Instructional Material
86

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

other hand, the init count trigger is executed just once per INSERT statement,

regardless of the number of records inserted, because we

have omitted the FOR EACH ROW phrase. Such a trigger is called a

statement-level trigger.

In the above example, the keyword new refers to the newly inserted tuple. If

an existing tuple were modified, the keywords old and new could be used to

refer to the values before and after the modification.

Such a trigger is shown in below example and is an alternative to the triggers

shown in above. The keyword clause NEW TABLE enables us to give table

name (InsertedTuples) to the set of newly inserted tuples. The FOR EACH

STATEMENT clause specifies a statement-level trigger and can be omitted

because it is the default. This definition does not have a WHEN clause; if such

a clause is included, it follows the FOR EACH STATEMENT clause, just

before the action specification.

The trigger is evaluated once for each SQL statement that inserts tuples into

Students, and inserts a single tuple into a table that contains statistics on

modifications to database tables. The first two fields of the tuple contain

constants (identifying the modified table, Students, and the kind of modifying

statement, an INSERT), and the third field is the number of inserted Students

tuples with age < 18.

CREATE TRIGGER set count AFTER INSERT ON Students /* Event */

REFERENCING NEW TABLE AS InsertedTuples

FOR EACH STATEMENT

INSERT /* Action */

INTO StatisticsTable(ModifiedTable, ModificationType, Count) SELECT

‘Students’, ‘Insert’, COUNT *

FROM InsertedTuples I

WHERE I.age < 18

7.16 Answers to Check Your Progress Questions

1. Structured Query Language (SQL) is a standard Database language which

is used to create, maintain and retrieve the relational database.

2. A nested query is a query that has another query embedded within it; the

embedded query is called a subquery.

3. SQL provides a special column value called null to use in such situations.

To use null when the column value is either unknown or inapplicable

7.17 Summary

• Structured Query Language (SQL) is a standard Database language

• Each item in a select-list can be of the form of expression.

• SQL also provides other set operations.

• A nested query is a query that has another query embedded within it

 Form of SQL Query
NOTES

 Self-Instructional Material
 87

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

• The occurrence of C in the subquery (in the form of the literal C.cid)

is called a correlation.

• Using null when the column value is either unknown or

inapplicable.

• There are three Logical Operators namely, AND, OR, and NOT.

• In the SQL outer JOIN all the content of the both tables are

integrated together either they are matched or not.

• Add NOT NULL to the definition of each one which is disallow the

NULL values in any of the columns

• SQL is a single query that is used to perform DML and DDL

operations.

• PL/SQL is a block of codes that used to write the entire program

blocks/ procedure/ function.

• A trigger is a procedure that is automatically invoked by the DBMS

in response to specified changes to the database, and is typically

specified by the DBA.

7.18 Keywords

• A simple SQL query and explains its meaning through a conceptual

evaluation strategy

• The embedded query is called a subquery.

• Correlated Queries are used for the purpose of row-by-row

processing

• Join returns all the rows from the left table combine with the

matching rows of the right table is known Left Outer Join.

• Join returns all the rows from right table are combined with the

matching rows of left table is known as Right Outer Join.

• There are several PL/SQL identifiers such as variables, constants,

procedures, cursors, triggers etc.

• A database that has a set of associated triggers is called an active

database.

7.19 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: SQL

2. What is meant by Nested Query?

3. What are the Aggregative Operators?

Form of Basic SQL Query
NOTES

Self-Instructional Material
88

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

4. What is a NULL value?

5. What is an Outer Join?

6. List the limitations of SQL.

7. What is Trigger?

Long Answer Questions:

1. Explain the Basic SQL queries with examples.

2. Describe the Logical Operators and its working in SQL queries

3. Describe the types of Outer join

4. Explain the significances of PL/SQL.

5. Write short-notes on the following

a. Structure of PL/SQL Block

b. Feature of PL/SQL

6. Explain the concept of Complex Integrity Constraints using Triggers

7.20 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011.

 Normal Forms
NOTES

 Self-Instructional Material
 89

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

UNIT VIII NORMAL FORMS

Structure

8.1 Introduction

8.2 Objectives

8.3 Problems caused by redundancy

8.4 Decompositions

8.5 Problem related to decomposition

8.6 Reasoning about FDS

8.7 FIRST, SECOND, THIRD Normal Forms

8.8 BCNF

8.9 Answers to Check Your Progress Questions

8.10 Summary

8.11 Key Words

8.12 Self-Assessment Questions and Exercises

8.13 Further Readings

8.1 Introduction

Normalization is the process of minimizing redundancy from a relation or

set of relations. Redundancy in relation may cause insertion, deletion and

updation anomalies. So, it helps to minimize the redundancy in

relations. Normal forms are used to eliminate or reduce redundancy in

database tables.

8.2 Objectives

After reading this chapter, you will get insights about:

 Fundamentals of Normalization and Normal forms

 Dependency preservation in relations

 Decompositions and its problems

 Normal forms: 1NF, 2NF, 3 NF and BCNF

8.3 Problems caused by redundancy

Problems Caused by Redundancy

Redundancy means having multiple copies of same data in the database. This

problem arises when a database is not normalized. Storing the same

information redundantly, that is, in more than one place within a database, can

lead to several problems: Redundant storage: Some information is stored

repeatedly. Problems caused due to redundancy are: Insertion anomaly,

Deletion anomaly, and Updation anomaly.

Normal Forms

NOTES

Self-Instructional Material
90

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 Insertion anomalies: It may not be possible to store some

information unless some other information is stored as well.

 Deletion anomalies: It may not be possible to delete some

information without losing some other information as well.

 Updation anomalies: If one copy of such repeated data is updated, an

inconsistency is created unless all copies are similarly updated.

Suppose a relation of student details attributes are:

Student (Regno, name, mobile, learning_centre, course).

 Insertion Anomaly – If a student detail has to be inserted whose

course is not being decided yet then insertion will not be possible

till the course is decided for student. This problem happens when

the insertion of a data record is not possible without adding some

additional unrelated data to the record.

 Deletion Anomaly – If the details of students in this table is

deleted then the details of learning_centre will also get deleted

which should not occur by common sense. This anomaly happens

when deletion of a data record results in losing some unrelated

information that was stored as part of the record that was deleted

from a table.

 Updation Anomaly – Suppose if student changes his/her mobile

number then changes will have to be all over the database which

will be time-consuming and computationally costly. If updation

do not occur at all places then database will be in inconsistent

state.

Let us consider whether the use of null values can address some of these

problems. Clearly, null values cannot help eliminate redundant storage or

update anomalies. It appears that they can address insertion and deletion

anomalies. Ideally, we want schemas that do not permit redundancy, but

at the very least we want to be able to identify schemas that do allow

redundancy. Even if we choose to accept a schema with some of these

drawbacks, perhaps owing to performance considerations, we want to

make an informed decision.

8.4 Decompositions

DECOMPOSITIONS

The process of breaking up or dividing a single relation into two or more

sub relations is called as decomposition of a relation.

Types of Decomposition-

 Decomposition of a relation can be completed in the following two ways-

Types of Decomposition

 Lossless Join Decomposition Lossy Join Decomposition

 Normal Forms
NOTES

 Self-Instructional Material
 91

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Lossless decomposition-

 Lossless decomposition ensures-

 No information is lost from the original relation during

decomposition.

 When the sub relations are joined back, the same relation is obtained

that was decomposed. Every decomposition must always be lossless.

Lossless Join Decomposition-

Consider there is a relation R which is decomposed into sub relations R1 , R2 ,

…. , Rn. This decomposition is called lossless join decomposition when the

join of the sub relations results in the same relation R that was decomposed.

For lossless join decomposition, we always have-

R1 ⋈ R2 ⋈ R3 ……. ⋈ Rn = R

where ⋈ is a natural join operator

Example-

Consider the following relation R (A , B , C)-

Table 8.1 R (A , B , C)

A B C

1 2 1

2 5 3

3 3 3

 Consider this relation is decomposed into two sub relations R1 (A , B) and

R2 (B , C). The two sub relations are-

Table 8.2 R1 (A , B)

A B

1 2

2 5

3 3

Table 8.3 R2 (B , C)

Normal Forms

NOTES

Self-Instructional Material
92

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

B C

2 1

5 3

3 3

Now, let us check whether this decomposition is lossless or not.

For lossless decomposition, we must have-

R1 ⋈ R2 = R

 Now, if we perform the natural join (⋈) of the sub relations R1 and R2 , we

get-

 Table 8.4 Natural Join of R1 and R2

A B C

1 2 1

2 5 3

3 3 3

This relation is same as the original relation R.

Thus, we conclude that the above decomposition is lossless join

decomposition.

NOTE-

 Lossless join decomposition is also known as non-additive join

decomposition.

 This is because the resultant relation after joining the sub relations is

same as the decomposed relation.

 No extraneous tuples appear after joining of the sub-relations.

 Lossy Join Decomposition-

 Consider there is a relation R which is decomposed into sub relations R1 , R2 ,

…. , Rn.

 This decomposition is called lossy join decomposition when the join

of the sub relations does not result in the same relation R that was

decomposed.

 Normal Forms
NOTES

 Self-Instructional Material
 93

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

 The natural join of the sub relations is always found to have some

extraneous tuples.

 For lossy join decomposition, we always have-

 R1 ⋈ R2 ⋈ R3 ……. ⋈ Rn ⊃ R

where ⋈ is a natural join operator

 Example-

 Consider the following relation RL (A , B , C)-

 Table 8.5 RL (A , B , C)

A B C

1 2 1

2 5 3

3 3 3

Consider this relation is decomposed into two sub relations as RL1(A , C)

and RL2(B , C)- The two sub relations are-

Table 8.6 RL1 (A , C)

A C

1 1

2 3

3 3

 Table 8.7 RL2 (B , C)

B C

2 1

5 3

3 3

Normal Forms

NOTES

Self-Instructional Material
94

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 Now, let us check whether this decomposition is lossy or not. For lossy

decomposition, we must have-

RL1 ⋈ RL2 ⊃ RL

 Now, if we perform the natural join (⋈) of the sub relations RL1 and RL2 we

get-

Table 8.8 Natural Join of RL1 and RL2

A B C

1 2 1

2 5 3

2 3 3

3 5 3

3 3 3

This relation is not same as the original relation R and contains some

extraneous tuples. Thus, we conclude that the above decomposition is lossy

join decomposition.

 NOTE-

 Lossy join decomposition is also known as careless decomposition.

 This is because extraneous tuples get introduced in the natural join of

the sub-relations.

 Extraneous tuples make the identification of the original tuples

difficult.

Determining Whether Decomposition Is Lossless Or Lossy-

Consider a relation R is decomposed into two sub relations R1 and R2.

Then,

 If all the following conditions satisfy, then the decomposition is

lossless.

 If any of these conditions fail, then the decomposition is lossy.

 Condition-01:

 Union of both the sub relations must contain all the attributes that are present

in the original relation R.

Thus,

 Normal Forms
NOTES

 Self-Instructional Material
 95

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

R1 ∪ R2 = R

Condition-02:

 Intersection of both the sub relations must not be null.

 In other words, there must be some common attribute which is present

in both the sub relations.

Thus,

R1 ∩ R2 ≠ ∅

 Condition-03:

 Intersection of both the sub relations must be a super key of either R1 or R2 or

both.

Thus,

R1 ∩ R2 = Super key of R1 or R2

8.5 Problem related to decomposition

Problems Related to Decomposition

Unless we are careful, decomposing a relation schema can create more

problems than it solves. Two important questions must be asked repeatedly:

1. Do we need to decompose a relation?

2. What problems (if any) does a given decomposition cause?

To help with the first question, several normal forms have been proposed for

relations. If a relation schema is in one of these normal forms, we know that

certain kinds of problems cannot arise. Considering the normal form of a

given relation schema can help us to decide whether or not to decompose it

further. If we decide that a relation schema must be decomposed further, we

must choose a particular decomposition (i.e., a particular collection of smaller

relations to replace the given relation). With respect to the second question,

two properties of decompositions are of particular interest. The lossless-join

property enables us to recover any instance of the decomposed relation from

corresponding instances of the smaller relations.

The dependency-preservation property enables us to enforce any constraint on

the original relation by simply enforcing some constraints on each of the

smaller relations. That is, we need not perform joins of the smaller relations to

check whether a constraint on the original relation is violated.

Normal Forms

NOTES

Self-Instructional Material
96

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Dependency Preservation-

 Dependency preservation ensures-

 None of the functional dependencies that holds on the original

relation are lost.

 The sub relations still hold or satisfy the functional dependencies of

the original relation.

8.6 Reasoning about FDS

FUNCTIONAL DEPENDENCIES

Functional Dependency is when one attribute determines another attribute in a

DBMS system. Functional Dependency plays a vital role to find the difference

between good and bad database design.

Table 8.9 Employee Relation

Employee

number

Employee

Name

Salary City

e1 Sunil 50000 Chennai

e2 Francis 38000 Bengaluru

e3 Akmal 25000 Punjab

In this example, if we know the value of Employee number, we can obtain

Employee Name, city, salary, etc.

By this, we can say that the city, Employee Name, and salary are functionally

depended on Employee number.

A functional dependency is denoted by an arrow →

The functional dependency of X on Y is represented by X →Y

A functional dependency (FD) is a kind of IC that generalizes the concept of a

key. Let R be a relation schema and let X and Y be nonempty sets of attributes

in R. We say that an instance r of R satisfies the FD X → Y 1 if the following

holds for every pair of tuples t1 and t2 in r:

If t1:X = t2:X, then t1:Y = t2:Y .

We use the notation t1:X to refer to the projection of tuple t1 onto the

attributes in X, in a natural extension of our TRC notation t:a for referring to

attribute a of tuple t. An FD X → Y essentially says that if two tuples agree on

the values in attributes X, they must also agree on the values in attributes Y.

A primary key constraint is a special case of an FD. The attributes in the key

play the role of X, and the set of all attributes in the relation plays the role of

Y. Note, however, that the definition of an FD does not require that the set X

be minimal; the additional minimality condition must be met for X to be a key.

 Normal Forms
NOTES

 Self-Instructional Material
 97

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

If X → Y holds, where Y is the set of all attributes, and there is some subset V

of X such that V → Y holds, then X is a super key; if V is a strict subset of X,

then X is not a key. In the rest of this chapter, we will see several examples of

FDs that are not key constraints.

Key terms

Table 8.10 Key terms for functional dependency

Key Terms Description

Axiom Axioms is a set of inference rules used to infer all the

functional dependencies on a relational database.

Decomposition It is a rule that suggests if you have a table that appears to

contain two entities which are determined by the same

primary key then you should consider breaking them up

into two different tables.

Dependent It is displayed on the right side of the functional

dependency diagram.

Determinant It is displayed on the left side of the functional dependency

Diagram.

Union It suggests that if two tables are separate, and the PK is the

same, you should consider putting them. together

Rules of Functional Dependencies

Below given are the Three most important rules for Functional Dependency:

 Reflexive rule: If X is a set of attributes and Y is_subset_of X, then X

holds a value of Y.

 Augmentation rule: When x → y holds, and c is attribute set, then ac

→ bc also holds. That is adding attributes which do not change the

basic dependencies.

o Transitivity rule: This rule is very much similar to the

transitive rule in algebra if x → y holds and y → z holds, then

x → z also holds. X → y is called as functionally that

determines y.

Closure of a Set of FDs

The set of all FDs implied by a given set F of FDs is called the closure of F

and is denoted as F +. An important question is how we can infer, or compute,

the closure of a given set F of FDs. The answer is simple and elegant. The

following three rules, called Armstrong's Axioms, can be applied repeatedly

Normal Forms

NOTES

Self-Instructional Material
98

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

to infer all FDs implied by a set F of FDs. We use X, Y, and Z to denote sets of

attributes over a relation schema R:

 Reflexivity: If X Y, then X → Y.

 Augmentation: If X → Y, then XZ → YZ for any Z.

 Transitivity: If X → Y and Y → Z, then X → Z.

Armstrong's Axioms are sound in that they generate only FDs in F + when

applied to a set F of FDs. They are complete in that repeated application of

these rules will generate all FDs in the closure F +. (We will not prove these

claims.) It is convenient to use some additional rules while reasoning about F

+:

 Union: If X → Y and X → Z, then X → YZ.

 Decomposition: If X → YZ, then X → Y and X → Z.

These additional rules are not essential; their soundness can be proved using

Armstrong's Axioms.

Types of Functional Dependencies

 Multivalued dependency:

 Trivial functional dependency:

 Non-trivial functional dependency:

 Transitive dependency:

Multivalued dependency in DBMS

Multivalued dependency occurs in the situation where there are multiple

independent multivalued attributes in a single table. A multivalued

dependency is a complete constraint between two sets of attributes in a

relation. It requires that certain tuples be present in a relation.

Table 8.11 Cars Relation

Car_model Mf_year Color

H001 2017 Metallic

H001 2017 Green

H005 2018 Metallic

H005 2018 Blue

H010 2015 Metallic

H033 2012 Gray

In this example, mf_year and color are independent of each other but

dependent on car_model. In this example, these two columns are said to be

multivalue dependent on car_model.

This dependence can be represented like this:

car_model -> mf_year

car_model-> colour

 Normal Forms
NOTES

 Self-Instructional Material
 99

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Trivial Functional dependency:

The Trivial dependency is a set of attributes which are called a trivial if the set

of attributes are included in that attribute.

So, X -> Y is a trivial functional dependency if Y is a subset of X.

Table 8.12 Employee Relation

Emp_id Emp_name

AS555 Satya Nadella

AS811 Sundar Pichai

AS999 Tim Cook

Consider this table with two columns Emp_id and Emp_name.

{Emp_id, Emp_name} -> Emp_id is a trivial functional dependency as

Emp_id is a subset of {Emp_id,Emp_name}.

Non trivial functional dependency in DBMS

Functional dependency which also known as a nontrivial dependency occurs

when A->B holds true where B is not a subset of A. In a relationship, if

attribute B is not a subset of attribute A, then it is considered as a non-trivial

dependency.

Table 8.12 Company and CEO Relation

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

(Company} -> {CEO} (if we know the Company, we knows the CEO name)

But CEO is not a subset of Company, and hence it's non-trivial functional

dependency.

Transitive dependency:

A transitive is a type of functional dependency which happens when t is

indirectly formed by two functional dependencies.

Table 8.13 Company and CEO Relation

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Alibaba Jack Ma 54

Normal Forms

NOTES

Self-Instructional Material
100

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

{Company} -> {CEO} (if we know the compay, we know its CEO's name)

{CEO } -> {Age} If we know the CEO, we know the Age

Therefore according to the rule of rule of transitive dependency:

{ Company} -> {Age} should hold, that makes sense because if we know the

company name, we can know his age.

Note: You need to remember that transitive dependency can only occur in a

relation of three or more attributes.

Advantages of Functional Dependency

 Functional Dependency avoids data redundancy. Therefore same data

do not repeat at multiple locations in that database

 It helps you to maintain the quality of data in the database

 It helps you to defined meanings and constraints of databases

 It helps you to identify bad designs

 It helps you to find the facts regarding the database design

8.7 FIRST, SECOND, THIRD Normal Forms

NORMAL FORMS

Given a relation schema, we need to decide whether it is a good design or

whether we need to decompose it into smaller relations. Such a decision must

be guided by an understanding of what problems, if any, arise from the current

schema. To provide such guidance, several normal forms have been proposed.

If a relation schema is in one of these normal forms, we know that certain

kinds of problems cannot arise.

The normal forms based on FDs are first normal form (1NF), second normal

form (2NF), third normal form (3NF), and Boyce-Codd normal form (BCNF).

These forms have increasingly restrictive requirements: Every relation in

BCNF is also in 3NF, every relation in 3NF is also in 2NF, and every relation

in 2NF is in 1NF. A relation is in first normal form if every field contains only

atomic values, that is, not lists or sets. This requirement is implicit in our de

nition of the relational model. Although some of the newer database systems

are relaxing this requirement, in this chapter we will assume that it always

holds. 2NF is mainly of historical interest. 3NF and BCNF are important from

a database design standpoint.

While studying normal forms, it is important to appreciate the role played by

FDs. Consider a relation schema R with attributes ABC. In the absence of any

ICs, any set of ternary tuples is a legal instance and there is no potential for

 Normal Forms
NOTES

 Self-Instructional Material
 101

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

redundancy. On the other hand, suppose that we have the FD A → B. Now if

several tuples have the same A value, they must also have the same B value.

This potential redundancy can be predicted using the FD information. If more

detailed ICs are specified, we may be able to detect more subtle redundancies

as well.

First Normal Form

As per the rule of first normal form, an attribute (column) of a table cannot

hold multiple values. It should hold only atomic values.

Example: Suppose a company wants to store the names and contact details of

its employees. It creates a table that looks like this:

Table 8.14 Employee Address Relation

emp_id emp_name emp_address emp_mobile

101 Roy Salem 8912312390

102 Suresh Karur
8812121212

9900012222

103 Mahesh Chennai 7778881212

104 Sunil Theni
9990000123

8123450987

Two employees (Suresh & Sunil) are having two mobile numbers so the

company stored them in the same field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have

atomic (single) values”, the emp_mobile values for employees Suresh & Sunil

violates that rule.

To make the table complies with 1NF we should have the data like this:

Table 8.15 Employee Address Relation in 1 NF

emp_id emp_name emp_address emp_mobile

101 Roy Salem 8912312390

102 Suresh Karur 8812121212

102 Suresh Karur 9900012222

103 Mahesh Chennai 7778881212

104 Sunil Theni 9990000123

104 Sunil Theni 8123450987

Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

 Table is in 1NF (First normal form)

 No non-prime attribute is dependent on the proper subset of any

candidate key of table.

Normal Forms

NOTES

Self-Instructional Material
102

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

An attribute that is not part of any candidate key is known as non-prime

attribute.

Example: Suppose a school wants to store the data of teachers and the

subjects they teach. They create a table that looks like this: Since a teacher can

teach more than one subjects, the table can have multiple rows for a same

teacher.

Table 8.16 Teacher Relation in 1NF and not in 2NF

teacher_id Subject teacher_mobile

111 Maths 8912312390

111 Physics 8912312390

222 Biology 9990000123

333 Physics 7778881212

333 Chemistry 7778881212

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_mobile

The table is in 1 NF because each attribute has atomic values. However, it is

not in 2NF because non prime attribute teacher_mobile is dependent on

teacher_id alone which is a proper subset of candidate key. This violates the

rule for 2NF as the rule says “no non-prime attribute is dependent on the

proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

Table 8.17 Teacher-Details Relation in both 1NF and 2NF

teacher_id teacher_mobile

111 8912312390

222 9990000123

 Table 8.18 Teacher-Subject Relation in both 1NF and 2NF

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

 Table must be in 2NF

 Transitive functional dependency of non-prime attribute on any super

key should be removed.

https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/

 Normal Forms
NOTES

 Self-Instructional Material
 103

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

An attribute that is not part of any candidate key is known as non-prime

attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF

and for each functional dependency X-> Y at least one of the following

conditions hold:

 X is a super key of table

 Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime

attribute.

Example: Suppose a company wants to store the complete address of each

employee, they create a table named employee_details that looks like this:

Table 8.19 Employee_Details Relation

emp_id emp_name pincode emp_state emp_city emp_loc

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name,

pincode}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are

not part of any candidate keys.

Here, emp_state, emp_city & emp_district dependent on pincode. And,

pincode is dependent on emp_id that makes non-prime attributes (emp_state,

emp_city & emp_district) transitively dependent on super key (emp_id). This

violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two

tables to remove the transitive dependency:

Table 8.20 Emp Relation

emp_id emp_name pincode

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

https://beginnersbook.com/2015/04/candidate-key-in-dbms/
https://beginnersbook.com/2015/04/super-key-in-dbms/

Normal Forms

NOTES

Self-Instructional Material
104

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Table 8.21 Emp_pincode Relation

pincode emp_state emp_city emp_loc

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

The definition of 3NF is similar to that of BCNF, with the only difference

being the third condition. Every BCNF relation is also in 3NF. To understand

the third condition, recall that a key for a relation is a minimal set of attributes

that uniquely determines all other attributes. A must be part of a key (any key,

if there are several). It is not enough for A to be part of a super key, because

the latter condition is satisfied by each and every attribute→ Finding all keys

of a relation schema is known to be an NP-complete problem, and so is the

problem of determining whether a relation schema is in 3NF.

Partial dependencies are illustrated in Figure 8.1, partial and transitive

dependencies are illustrated. Note that in Figure 8.1, the set X of attributes

may or may not have some attributes in common with KEY; the diagram

should be interpreted as indicating only that X is not a subset of KEY.

Fig. 8.1 Partial and Transitive Dependencies

The motivation for 3NF is rather technical. By making an exception for

certain dependencies involving key attributes, we can ensure that every

relation schema can be decomposed into a collection of 3NF relations using

only decompositions that have certain desirable properties. Such a guarantee

does not exist for BCNF relations; the 3NF definition weakens the BCNF

requirements just enough to make this guarantee possible.

 Normal Forms
NOTES

 Self-Instructional Material
 105

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

8.8 BCNF

Boyce-Codd Normal Form

Let R be a relation schema, X be a subset of the attributes of R, and let A be an

attribute of R. R is in Boyce-Codd normal form if for every FD X → A that

holds over R, one of the following statements is true:

 A 2 X; that is, it is a trivial FD, or

 X is a super key.

Note that if we are given a set F of FDs, according to this definition, we must

consider each dependency X → A in the closure F + to determine whether R is

in BCNF. However, we can prove that it is sufficient to check whether the left

side of each dependency in F is a super key (by computing the attribute

closure and seeing if it includes all attributes of R).

Intuitively, in a BCNF relation the only nontrivial dependencies are those in

which a key determines some attribute(s). Thus, each tuple can be thought of

as an entity or relationship, identified by a key and described by the remaining

attributes. Kent puts this colorfully, if a little loosely: Each attribute must

describe [an entity or relationship identified by] the key, the whole key, and

nothing but the key." If we use ovals to denote attributes or sets of attributes

and draw arcs to indicate FDs, a relation in BCNF has the structure illustrated

in Figure, considering just one key for simplicity. (If there are several

candidate keys, each candidate key can play the role of KEY in the figure,

with the other attributes being the ones not in the chosen candidate key.)

BCNF ensures that no redundancy can be detected using FD information

alone. It is thus the most desirable normal form (from the point of view of

redundancy) if we take into account only FD information.

Check Your Progress

1. What is meant by Redundancy?

2. What is called non-additive join decomposition?

3. What is the purpose of FDS?

Normal Forms

NOTES

Self-Instructional Material
106

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Boyce Codd normal form (BCNF)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF

is stricter than 3NF. A table complies with BCNF if it is in 3NF and for

every functional dependency X->Y, X should be the super key of the table.

Example: Suppose there is a company wherein manager manages in more

than one department. They store the data like this:

Table 8.22 Manager_Department Relation

Mg_id Mg_city Mg_dept Mg-type
No of

Emps

1001 Chennai Production & Planning D001 200

1001 Chennai Stores D001 250

1002 Pune Design & Technical Support D134 100

1002 Pune Purchasing Department D134 600

Functional dependencies in the table above:

Mg_id -> Mg-city

Mg_dept -> {Mg_type, No of Emps}

Candidate key: {Mg_id, Mg_dept}

The table is not in BCNF as neither Mg_id nor Mg_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables

like this:

Table 8.23.a Manager_City Relation

Mg_id Mg_city

1001 Chennai

1002 Pune

Table 8.23.b Department Relation

Mg_dept Mg-type No of Emps

Production & Planning D001 200

Stores D001 250

Design & Technical Support D134 100

Purchasing Department D134 600

Table 8.23.c Manager-Department Relation

Mg_id Mg_dept

1001 Production & Planning

1001 Stores

1002 Design & Technical Support

1002 Purchasing Department

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

 Normal Forms
NOTES

 Self-Instructional Material
 107

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Functional dependencies:

Mg_id -> Mg_city

Mg_dept -> {Mg_type, No of Emps}

Candidate keys:

For first table: Mg_id

For second table: Mg_dept

For third table: {Mg_id, Mg_dept}

This is now in BCNF as in both the functional dependencies left side part is a

key.

Thus, if a relation is in BCNF, every field of every tuple records a piece of

information that cannot be inferred (using only FDs) from the values in all

other fields in (all tuples of) the relation instance.

8.9 Answers to Check Your Progress Questions

1. Redundancy means having multiple copies of same data in the database.

This problem arises when a database is not normalized.

2. Lossless join decomposition is also known as non-additive join

decomposition.

3. Functional Dependency is a vital role to find the difference between good

and bad database design.

8.10 Summary

• Functional Dependency is when one attribute determines another

attribute in a DBMS system.

• Axiom, Decomposition, Dependent, Determinant, Union are key

terms for functional dependency

• Four types of functional dependency are 1) Multivalued 2) Trivial 3)

Non-trivial 4) Transitive

• Multivalued dependency occurs in the situation where there are

multiple independent multivalued attributes in a single table

• The Trivial dependency occurs when a set of attributes which are

called a trivial if the set of attributes are included in that attribute

• Nontrivial dependency occurs when A→B holds true where B is not a

subset of A

• A transitive is a type of functional dependency which happens when it

is indirectly formed by two functional dependencies

• Normalization is a method of organizing the data in the database

which helps you to avoid data redundancy

• Functional dependency helps you to maintain the quality of data in the

database

Normal Forms

NOTES

Self-Instructional Material
108

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

8.11 Keywords

• Redundancy means having multiple copies of same data in the

database.

• The process of breaking up or dividing a single relation into two or

more sub relations is called as decomposition of a relation.

• Lossless join decomposition is also known as non-additive join

decomposition.

• Functional Dependency is when one attribute determines another

attribute in a DBMS system.

• A multivalued dependency is a complete constraint between two sets

of attributes in a relation.

• A transitive is a type of functional dependency which happens when it

is indirectly formed by two functional dependencies.

8.12 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Redundancy

2. What is meant by Decompositions?

3. What is a Functional Dependency?

4. Name the different types of Functional Dependency

5. What is meant by Normal Forms?

Long Answer Questions:

1. Write the Problems Caused by Redundancy?

2. Write the types of Decompositions?

3. Write short notes on

a. Functional Dependencies

b. Key terms for Functional Dependency

c. Rules of Functional Dependencies

4. Write short notes on

a. Multivalued dependency

b. Trivial functional dependency

c. Non-trivial functional dependency

d. Transitive dependency

5. Write short notes on First, Second, Third Normal Forms

8.13 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011.

 Joins
 NOTES

 Self-Instructional Material
 109

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

UNIT IX JOINS

Structure

9.1 Introduction

9.2 Objectives

9.3 Lossless Join Decomposition

9.4 Dependency preserving Decomposition

9.5 Schema refinement in Database Design

9.6 Multi valued Dependencies

9.7 FORTH Normal Form

9.8 Answers to Check Your Progress Questions

9.9 Summary

9.10 Key Words

9.11 Self-Assessment Questions and Exercises

9.12 Further Readings

9.1 Introduction

A join is an SQL operation performed to establish a connection between two

or more database tables based on matching columns, thereby creating a

relationship between the tables. Most complex queries in an SQL database

management system involve join commands. There are different types of

joins. The type of join a programmer uses determines which records the query

selects.

9.2 Objectives

This chapter will impart the fundamentals about:

 Dependency preserving Decomposition

 Schema refinement in Database Design

 Multi-valued Dependencies

 4NF

9.3 Lossless Join Decomposition

Lossless-Join Decomposition

Let R be a relation schema and let F be a set of FDs over R. A decomposition

of R into two schemas with attribute sets X and Y is said to be a lossless-join

decomposition with respect to F if for every instance r of R that satisfies the

dependencies in F, X (r) ./ Y (r) = r.

 Joins

 NOTES

Self-Instructional Material
110

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

This definition can easily be extended to cover a decomposition of R into

more than two relations. It is easy to see that r X (r) ./ Y (r) always holds. In

general, though, the other direction does not hold. If we take projections of a

relation and recombine them using natural join, we typically obtain some

tuples that were not in the original relation. This situation is illustrated in

Figure 15.11.

By replacing the instance r shown in Figure 15.11 with the instances SP (r)

and P D(r), we lose some information. In particular, suppose that the tuples in

r denote relationships. We can no longer tell that the relationships (s1; p1; d3)

and (s3; p1; d1) do not hold. The decomposition of schema SPD into SP and

PD is therefore a `lossy' decomposition if the instance r shown in the figure is

legal, that is, if this instance could arise in the enterprise being modeled. All

decompositions used to eliminate redundancy must be lossless. The following

simple test is very useful: Let R be a relation and F be a set of FDs that hold

over R. The decomposition of R into relations with attribute sets R1 and R2 is

lossless if and only if F + contains either the FD R1 \ R2 → R1 or the FD R1 \

R2 → R2.

In other words, the attributes common to R1 and R2 must contain a key for

either R1 or R2. If a relation is decomposed into two relations, this test is a

necessary and sufficient condition for the decomposition to be lossless-join. If

a relation is decomposed into more than two relations, an efficient (time

polynomial in the size of the dependency set) algorithm is available to test

whether or not the decomposition is lossless, but we will not discuss it.

Consider the Hourly Emps relation again. It has attributes SNLRWH, and the

FD R → W causes a violation of 3NF. We dealt with this violation by

decomposing the relation into SNLRH and RW. Since R is common to both

decomposed relations, and R → W holds, this decomposition is lossless-join.

This example illustrates a general observation:

 If an FD X → Y holds over a relation R and X \Y is empty, the decomposition

of R into R - Y and XY is lossless.

 X appears in both R -Y (since X \ Y is empty) and XY, and it is a key for XY.

Thus, the above observation follows from the test for a lossless-join

decomposition.

Another important observation has to do with repeated decompositions.

Suppose that a relation R is decomposed into R1 and R2 through a lossless-

 Joins
 NOTES

 Self-Instructional Material
 111

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

join decomposition, and that R1 is decomposed into R11 and R12 through

another lossless-join decomposition. Then the decomposition of R into R11,

R12, and R2 is lossless-join; by joining R11 and R12 we can recover R1, and

by then joining R1 and R2, we can recover R.

9.4 Dependency preserving Decomposition

Dependency-Preserving Decomposition

Consider the Contracts relation with attributes CSJDPQV from Section 15.4.1.

The given FDs are C → CSJDPQV, JP → C, and SD → P. Because SD is not

a key the dependency SD → P causes a violation of BCNF.

We can decompose Contracts into two relations with schemas CSJDQV and

SDP to address this violation; the decomposition is lossless-join. There is one

subtle problem, however. We can enforce the integrity constraint JP → C

easily when a tuple is inserted into Contracts by ensuring that no existing

tuple has the same JP values (as the inserted tuple) but different C values.

Once we decompose Contracts into CSJDQV and SDP, enforcing this

constraint requires an expensive join of the two relations whenever a tuple is

inserted into CSJDQV. We say that this decomposition is not dependency-

preserving.

Intuitively, a dependency-preserving decomposition allows us to enforce all

FDs by examining a single relation instance on each insertion or modification

of a tuple. (Note that deletions cannot cause violation of FDs.) To de ne

dependency-preserving decompositions precisely, we have to introduce the

concept of a projection of FDs.

Let R be a relation schema that is decomposed into two schemas with attribute

sets X and Y, and let F be a set of FDs over R. The projection of F on X is the

set of FDs in the closure F + (not just F →) that involve only attributes in X.

We will denote the projection of F on attributes X as FX . Note that a

dependency U → V in F + is in FX only if all the attributes in U and V are in

X.

The decomposition of relation schema R with FDs F into schemas with

attribute sets X and Y is dependency-preserving if (FX [FY)+ = F +. That is,

if we take the dependencies in FX and FY and compute the closure of their

union, we get back all dependencies in the closure of F. Therefore, we need to

enforce only the dependencies in FX and FY ; all FDs in F + are then sure to

be satisfied. To enforce FX , we need to examine only relation X (on inserts to

that relation). To enforce FY , we need to examine only relation Y.

 Joins

 NOTES

Self-Instructional Material
112

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

9.5 Schema refinement in Database Design

We now present an overview of the problems that schema refinement is

intended to address and a refinement approach based on decompositions.

Redundant storage of information is the root cause of these problems.

Although decomposition can eliminate redundancy, it can lead to problems of

its own and should be used with caution.

9.6 Multivalued Dependencies

Multivalued Dependencies

Suppose that we have a relation with attributes course, teacher, and book,

which we denote as CTB. The meaning of a tuple is that teacher T can teach

course C, and book B is a recommended text for the course. There are no FDs;

the key is CTB. However, the recommended texts for a course are independent

of the Faculty. The instance shown in the following table illustrates this

situation.

Table 9.1 Course – Teacher – Book Relation

BCNF Relation with Redundancy That Is Revealed by MVDs

There are three points to note here:

 The relation schema CTB is in BCNF; thus we would not consider

decomposing it further if we looked only at the FDs that hold over

CTB.

 There is redundancy. The fact that Green can teach Physics101 is

recorded once per recommended text for the course. Similarly, the

fact that Optics is a text for Physics101 is recorded once per potential

teacher.

 The redundancy can be eliminated by decomposing CTB into CT and

CB.

The redundancy in this example is due to the constraint that the texts for a

course are independent of the Faculty, which cannot be expressed in terms of

FDs. This constraint is an example of a multivalued dependency, or MVD.

Ideally, we should model this situation using two binary relationship sets,

Course Teacher Book
Physics101 Raj Mechanics
Physics101 Raj Optics
Physics101 Kumar Mechanics
Physics101 Kumar Optics
Math301 Sunil Mechanics
Math301 Sunil Vectors
Math301 Sunil Geometry

 Joins
 NOTES

 Self-Instructional Material
 113

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Faculty with attributes CT and Text with attributes CB. Because these are two

essentially independent relationships, modeling them with a single ternary

relationship set with attributes CTB is inappropriate. Given the subjectivity of

ER design, however, we might create a ternary relationship. A careful analysis

of the MVD information would then reveal the problem.

Let R be a relation schema and let X and Y be subsets of the attributes of R.

Intuitively, the multivalued dependency X →→ Y is said to hold over R if, in

every legal instance r of R, each X value is associated with a set of Y values

and this set is independent of the values in the other attributes.

Formally, if the MVD X →→ Y holds over R and Z = R - XY , the following

must be true for every legal instance r of R:

If t1 2 r, t2 2 r and t1:X = t2:X, then there must be some t3 2 r such that

t1:XY = t3:XY and t2:Z = t3:Z.

Following relation illustrates this definition. If we are given the first two

tuples and told that the MVD X →→ Y holds over this relation, we can infer

that the relation instance must also contain the third tuple. Indeed, by

interchanging the roles of the rst two tuples treating the first tuple as t2 and

the second tuple as t1|we can deduce that the tuple t4 must also be in the

relation instance.

X Y Z
a b1 c1 | tuple t1
a b2 c2 | tuple t2
a b1 c2 | tuple t3
a b2 c1 | tuple t4

Illustration of MVD Definition

This table suggests another way to think about MVDs: If X →→ Y

holds over R, then Y Z (X=x(R)) = Y (X=x(R)) Z (X=x(R)) in every

legal instance of R, for any value x that appears in the X column of R. In

other words, consider groups of tuples in R with the

same X-value, for each X-value. In each such group consider the

projection onto the attributes YZ. This projection must be equal to the

cross-product of the projections onto Y and Z. That is, for a given X-

value, the Y-values and Z-values are independent. (From this definition

it is easy to see that X →→ Y must hold whenever X → Y holds. If the

FD X → Y holds, there is exactly one Y-value for a given X-value, and

the conditions in the MVD definition hold trivially)

Returning to our CTB example, the constraint that course texts are

independent of Faculty members can be expressed as C →→ T. In

terms of the definition of MVDs, this constraint can be read as follows:

\If (there is a tuple showing that) C is taught by teacher T,

 Joins

 NOTES

Self-Instructional Material
114

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

and (there is a tuple showing that) C has book B as text,

then (there is a tuple showing that) C is taught by T and has text B.

Given a set of FDs and MVDs, in general we can infer that several

additional FDs and MVDs hold. A sound and complete set of inference

rules consists of the three Armstrong Axioms plus ve additional rules.

Three of the additional rules involve only MVDs:

 MVD Complementation: If X →→ Y, then X →→ R - XY .

 MVD Augmentation: If X →→ Y and W Z, then WX →→ YZ.

 MVD Transitivity: If X →→ Y and Y →→ Z, then X →→ (Z-Y)

As an example of the use of these rules, since we have C →→ T over

CTB, MVD complementation allows us to infer that C →→ CT B - CT

as well, that is, C →→ B. The remaining two rules relate FDs and

MVDs:

Replication: If X → Y, then X →→ Y.

 Coalescence: If X →→ Y and there is a W such that W \ Y is

empty, W → Z, and Y Z, then X → Z.

Observe that replication states that every FD is also an MVD.

9.7 FORTH Normal Form

Fourth Normal Form

Fourth normal form is a direct generalization of BCNF. Let R be a relation

schema, X and Y be nonempty subsets of the attributes of R, and F be a set of

dependencies that includes both FDs and MVDs. R is said to be in fourth

normal form (4NF) if for every MVD X →→ Y that holds over R, one of the

following statements is true:

Y X or XY = R, or

X is a Superkey.

 In reading this definition, it is important to understand that the definition of a

key has not changed the key must uniquely determine all attributes through

FDs alone. X →→ Y is a trivial MVD if Y X R or XY = R; such MVDs always

hold.

Check Your Progress

1. What is meant by loseless join decomposition?

2. What is meant by Schema Refinement?

3. Define: MVD

 Joins
 NOTES

 Self-Instructional Material
 115

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

The relation CTB is not in 4NF because C →→ T is a nontrivial MVD and C

is not a key. We can eliminate the resulting redundancy by decomposing CTB

into CT and CB; each of these relations is then in 4NF.

To use MVD information fully, we must understand the theory of MVDs.

However, the following result due to Date and Fagin identifies conditions

detected using only FD information→|under which we can safely ignore

MVD information. That is, using MVD information in addition to the FD

information will not reveal any redundancy. Therefore, if these conditions

hold, we do not even need to identify all MVDs.

If a relation schema is in BCNF, and at least one of its keys consists of a

single attribute, it is also in 4NF.

An important assumption is implicit in any application of the preceding result:

The set of FDs identified thus far is indeed the set of all FDs that hold over

the relation. This assumption is important because the result relies on the

relation being in BCNF, which in turn depends on the set of FDs that hold

over the relation.

Following relation shows three tuples from an instance of ABCD that satisfies

the given MVD B →→ C. From the definition of an MVD, given tuples t1

and t2, it follows

B C A D
b c1 a1 d1 | tuple t1
b c2 a2 d2 | tuple t2
b c1 a2 d2 | tuple t3

Three Tuples from a Legal Instance of ABCD

that tuple t3 must also be included in the instance. Consider tuples t2 and t3.

From the given FD A → BCD and the fact that these tuples have the same A-

value, we can deduce that c1 = c2. Thus, we see that the FD B → C must hold

over ABCD whenever the FD A → BCD and the MVD B →→ C hold. If B →

C holds, the relation ABCD is not in BCNF (unless additional FDs hold that

make B a key)

9.8 Answers to Check Your Progress Questions

1. It is the ability to ensure that any instance of the original relation can be

identified from corresponding instances in the smaller relations.

2. Schema refinement is intended to address and a refinement approach

based on decompositions.

3. Multivalued Dependency (MVD) occurs when two attributes in a table

are independent of each other but, both depend on a third attribute. A

multivalued dependency consists of at least two attributes that are

dependent on a third attribute that's why it always requires at least three

attributes.

 Joins

 NOTES

Self-Instructional Material
116

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

9.9 Summary

• A relation R with set of functional dependencies F. If R is

decomposed into relations R1 and R2, then this decomposition is said

to be lossless decomposition

• All decompositions used to eliminate redundancy must be lossless.

• A dependency-preserving decomposition allows us to enforce all FDs

by examining a single relation instance on each insertion or

modification of a tuple.

• The schema refinement is intended to address and a refinement

approach based on decompositions.

• Multivalued dependency occurs when there are more than one

independent multivalued attributes in a table.

• Fourth normal form is a direct generalization of BCNF.

9.10 Keywords

 The attributes common to relations R1 and R2 must contain a key for

either R1 or R2. If a relation is decomposed into two relations, this

test is a necessary and sufficient condition for the decomposition to be

lossless-join.

 Redundant storage of information will leads to problems in

dependency preservation.

 Decomposition can eliminate redundancy.

 A dependency-preserving decomposition allows us to enforce all FDs

by examining a single relation instance on each insertion or

modification of a tuple.

 The schema refinement is intended to address and a refinement

approach based on decompositions.

 Multivalued Dependency (MVD) occurs when two attributes in a

table are independent of each other but, both depend on a third

attribute.

 Multivalued dependency occurs when there are more than one

independent multivalued attributes in a table.

 Fourth normal form is a direct generalization of BCNF.

9.11 Self-Assessment Questions and Exercises

Short Answer Questions:

1. What is meant by Lossless Decomposition?

2. Define: Schema Refinement.

Long Answer Questions:

1. Explain the 4NF with example.

2. Elaborate on MVD.

9.12 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011

 Introduction to Transactions
NOTES

 Self-Instructional Material
 117

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

UNIT X INTRODUCTION

Structure

10.1 Introduction

10.2 Objectives

10.3 Transaction Concept

10.4 Transaction State

10.5 Implementation of Atomicity and Durability

10.6 Concurrent

10.7 Executions

10.8 Serializability

10.9 Implementation of Isolation

10.10 Answers to Check Your Progress Questions

10.11 Summary

10.12 Key Words

10.13 Self-Assessment Questions and Exercises

10.14 Further Readings

10.1 Introduction

A transaction is a logical unit of processing in a DBMS which entails one or

more database access operation. In a nutshell, database transactions represent

real-world events of any enterprise. All types of database access operation

which are held between the beginning and end transaction statements are

considered as a single logical transaction. During the transaction the database

is inconsistent. Only once the database is committed the state is changed from

one consistent state to another.

10.2 Objectives

This chapter leads to understand:

 Basics of Transaction and its states

 ACID Properties

 Uses and issues related to Concurrent transactions

 Serializability

10.3 Transaction Concept

What is a Transaction?

A transaction is an event which occurs on the database. Generally a

transaction reads a value from the database or writes a value to the database. If

you have any concept of Operating Systems, then we can say that a

transaction is analogous to processes.

Introduction to Transaction
NOTES

Self-Instructional Material
118

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Although a transaction can both read and write on the database, there are

some fundamental differences between these two classes of operations. A read

operation does not change the image of the database in any way. But a write

operation, whether performed with the intention of inserting, updating or

deleting data from the database, changes the image of the database. That is,

we may say that these transactions bring the database from an image which

existed before the transaction occurred (called the Before Image or BFIM) to

an image which exists after the transaction occurred (called the After Image

or AFIM).

10.4 Transaction State

Transaction States

There are the following six states in which a transaction may exist:

Active: The initial state when the transaction has just started execution.

Partially Committed: At any given point of time if the transaction is

executing properly, then it is going towards it COMMIT POINT. The values

generated during the execution are all stored in volatile storage.

Failed: If the transaction fails for some reason. The temporary values are no

longer required, and the transaction is set to ROLLBACK. It means that any

change made to the database by this transaction up to the point of the failure

must be undone. If the failed transaction has withdrawn Rs. 100/- from

account A, then the ROLLBACK operation should add Rs 100/- to account A.

Aborted: When the ROLLBACK operation is over, the database reaches the

BFIM. The transaction is now said to have been aborted.

Committed: If no failure occurs then the transaction reaches the COMMIT

POINT. All the temporary values are written to the stable storage and the

transaction is said to have been committed.

Terminated: Either committed or aborted, the transaction finally reaches this

state. The whole process can be described using the following diagram

 Introduction to Transactions
NOTES

 Self-Instructional Material
 119

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Transaction Characteristics

Every transaction has three characteristics: access mode, diagnostics size, and

isolation level. The diagnostics size determines the number of error conditions

that can be recorded. If the access mode is READ ONLY, the transaction is

not allowed to modify the database. Thus, INSERT, DELETE, UPDATE, and

CREATE commands cannot be executed. If we have to execute one of these

commands, the access mode should be set to READ WRITE. For transactions

with READ ONLY access mode, only shared locks need to be obtained,

thereby increasing concurrency. The isolation level controls the extent to

which a given transaction is exposed to the actions of other

transactions executing concurrently. By choosing one of four possible

isolation level settings, a user can obtain greater concurrency at the cost of

increasing the transaction's exposure to other transactions' uncommitted

changes. Isolation level choices are READ UNCOMMITTED, READ

COMMITTED, REPEATABLE READ, and SERIALIZABLE. The effect of

these levels is summarized in Table 10.1 given below. In this context, dirty

read and unrepeatable read are defined as usual. Phantom is defined to be the

possibility that a transaction retrieves a collection of objects (in SQL terms, a

collection of tuples) twice and sees different results, even though it does not

modify any of these tuples itself. The highest degree of isolation from the

effects of other

Table 10.1 Transaction Isolation Levels

Level Dirty Read Unrepeatable Read Phantom

READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

Maybe

No

No

No

Maybe

Maybe

No

No

Maybe

Maybe

Maybe

 No

transactions is achieved by setting isolation level for a transaction T to

SERIALIZABLE. This isolation level ensures that T reads only the changes

made by committed transactions, that no value read or written by T is changed

by any other transaction until T is complete, and that if T reads a set of values

based on some search condition, this set is not changed by other transactions

until T is complete (i.e., T avoids the phantom phenomenon).

In terms of a lock-based implementation, a SERIALIZABLE transaction

obtains locks before reading or writing objects, including locks on sets of

objects that it requires to be unchanged, and holds them until the end,

according to Strict 2PL.

REPEATABLE READ ensures that T reads only the changes made

by committed transactions, and that no value read or written by T is

changed by any other transaction until T is complete. However, T

could experience the phantom phenomenon; for example, while T

examines all Customer records with rating=1, another transaction

might add a new such Customer record, which is missed by T.

Introduction to Transaction
NOTES

Self-Instructional Material
120

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

A REPEATABLE READ transaction uses the same locking protocol

as a SERIALIZABLE transaction, except that it does not do index

locking, that is, it locks only individual objects, not sets of objects.

READ COMMITTED ensures that T reads only the changes made

by committed transactions, and that no value written by T is changed

by any other transaction until T is complete. However, a value read by

T may well be modified by another transaction while T is still in

progress, and T is, of course, exposed to the phantom problem.

A READ COMMITTED transaction obtains exclusive locks before

writing objects and holds these locks until the end. It also obtains

shared locks before reading objects, but these locks are released

immediately; their only effect is to guarantee that the transaction that

last modified the object is complete.

(This guarantee relies on the fact that every SQL transaction obtains

exclusive locks before writing objects and holds exclusive locks until

the end.)

A READ UNCOMMITTED transaction T can read changes made to

an object by an ongoing transaction; obviously, the object can be

changed further while T is in progress, and T is also vulnerable to the

phantom problem.

A READ UNCOMMITTED transaction does not obtain shared

locks before reading objects. This mode represents the greatest

exposure to uncommitted changes of other transactions; so much so

that SQL prohibits such a transaction from making any changes itself

- a READ UNCOMMITTED transaction is required to have an access

mode of READ ONLY. Since such a transaction obtains no locks for

reading objects, and it is not allowed to write objects (and therefore

never requests exclusive locks), it never makes any lock requests.

The SERIALIZABLE isolation level is generally the safest and is

recommended for most transactions. Some transactions, however, can

run with a lower isolation level, and the smaller number of locks

requested can contribute to improved system performance.

For example, a statistical query that finds the average Customer age

can be run at the READ COMMITTED level, or even the READ

UNCOMMITTED level, because a few incorrect or missing values

will not significantly affect the result if the number of Customer is

large. The isolation level and access mode can be set using the SET

TRANSACTION command. For example, the following command

 Introduction to Transactions
NOTES

 Self-Instructional Material
 121

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

declares the current transaction to be SERIALIZABLE and READ

ONLY:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

READ ONLY

When a transaction is started, the default is SERIALIZABLE and

READ WRITE

10.5 Implementation of Atomicity and Durability

Atomicity: This means that either all of the instructions within the transaction

will be reflected in the database, or none of them will be reflected.

Say for example, we have two accounts A and B, each containing Rs 1000/-.

We now start a transaction to deposit Rs 100/- from account A to Account B.

Read A;

A = A – 100;

Write A;

Read B;

B = B + 100;

Write B;

Fine, is not it? The transaction has 6 instructions to extract the amount from A

and submit it to B. The AFIM will show Rs 900/- in A and Rs 1100/- in B.

Now, suppose there is a power failure just after instruction 3 (Write A) has

been complete. What happens now? After the system recovers the AFIM will

show Rs 900/- in A, but the same Rs 1000/- in B. It would be said that Rs

100/- evaporated in thin air for the power failure. Clearly such a situation is

not acceptable.

The solution is to keep every value calculated by the instruction of the

transaction not in any stable storage (hard disc) but in a volatile storage

(RAM), until the transaction completes its last instruction. When we see that

there has not been any error we do something known as a COMMIT

operation. Its job is to write every temporarily calculated value from the

volatile storage on to the stable storage. In this way, even if power fails at

instruction 3, the post recovery image of the database will show accounts A

and B both containing Rs 1000/-, as if the failed transaction had never

occurred

Durability:

It states that once a transaction has been complete the changes it has made

should be permanent.

Introduction to Transaction
NOTES

Self-Instructional Material
122

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

As we have seen in the explanation of the Atomicity property, the transaction,

if completes successfully, is committed. Once the COMMIT is done, the

changes which the transaction has made to the database are immediately

written into permanent storage. So, after the transaction has been committed

successfully, there is no question of any loss of information even if the power

fails. Committing a transaction guarantees that the AFIM has been reached.

There are several ways Atomicity and Durability can be implemented. One of

them is called Shadow Copy. In this scheme a database pointer is used to

point to the BFIM of the database. During the transaction, all the temporary

changes are recorded into a Shadow Copy, which is an exact copy of the

original database plus the changes made by the transaction, which is the

AFIM. Now, if the transaction is required to COMMIT, then the database

pointer is updated to point to the AFIM copy, and the BFIM copy is

discarded. On the other hand, if the transaction is not committed, then the

database pointer is not updated. It keeps pointing to the BFIM, and the AFIM

is discarded. This is a simple scheme, but takes a lot of memory space and

time to implement. If you study carefully, you can understand that Atomicity

and Durability is essentially the same thing, just as Consistency and Isolation

is essentially the same thing.

10.6 Concurrent

A schedule is a collection of many transactions which is implemented as a

unit. Depending upon how these transactions are arranged in within a

schedule, a schedule can be of two types:

 Serial: The transactions are executed one after another, in a non-

preemptive manner.

  Concurrent: The transactions are executed in a preemptive, time

shared method.

In Serial schedule, there is no question of sharing a single data item among

many transactions, because not more than a single transaction is executing at

any point of time. However, a serial schedule is inefficient in the sense that

the transactions suffer for having a longer waiting time and response time, as

well as low amount of resource utilization.

In concurrent schedule, CPU time is shared among two or more transactions

in order to run them concurrently. However, this creates the possibility that

more than one transaction may need to access a single data item for read/write

purpose and the database could contain inconsistent value if such accesses are

not handled properly. Let us explain with the help of an example.

 Introduction to Transactions
NOTES

 Self-Instructional Material
 123

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

10.7 Concurrent Execution

Let us consider there are two transactions T1 and T2, whose instruction sets

are given as following.

T1 is the same as we have seen earlier, while T2 is a new transaction.

T1

Read A;

A = A – 100;

Write A;

Read B;

B = B + 100;

Write B;

T2

Read A;

Temp = A * 0.1;

Read C;

C = C + Temp;

Write C;

T2 is a new transaction which deposits to account C 10% of the amount in

account A. If we prepare a serial schedule, then either T1 will completely

finish before T2 can begin, or T2 will completely finish before T1 can begin.

However, if we want to create a concurrent schedule, then some Context

Switching need to be made, so that some portion of T1 will be executed, then

some portion of T2 will be executed and so on. For example say we have

prepared the following concurrent schedule.

T1 T2

Read A;

A = A – 100;

Write A;

Read A;

Temp = A * 0.1;

Read C;

C = C + Temp;

Write C;

Read B;

B = B + 100;

Write B;

No problem here. We have made some Context Switching in this Schedule,

the first one after executing the third instruction of T1, and after executing the

last statement of T2. T1 first deducts Rs 100/- from A and writes the new

Introduction to Transaction
NOTES

Self-Instructional Material
124

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

value of Rs 900/- into A. T2 reads the value of A, calculates he value of Temp

to be Rs 90/- and adds the value to C. The remaining part of T1 is executed

and Rs 100/- is added to B.

It is clear that a proper Context Switching is very important in order to

maintain the Consistency and Isolation properties of the transactions. But let

us take another example where a wrong Context Switching can bring about

disaster. Consider the following example involving the same T1 and T2

T1 T2

Read A;

A = A – 100;

Read A;

Temp = A * 0.1;

Read C;

C = C + Temp;

Write C;

Write A;

Read B;

B = B + 100;

Write B;

This schedule is wrong, because we have made the switching at the second

instruction of T1. The result is very confusing. If we consider accounts A and

B both containing Rs 1000/- each, then the result of this schedule should have

left Rs 900/- in A, Rs 1100/- in B and add Rs 90 in C (as C should be

increased by 10% of the amount in A). But in this wrong schedule, the

Context Switching is being performed before the new value of Rs 900/- has

been updated in A. T2 reads the old value of A, which is still Rs 1000/-, and

deposits Rs 100/- in C. C makes an unjust gain of Rs 10/- out of

nowhere.

In the above example, we detected the error simple by examining the schedule

and applying common sense. But there must be some well formed rules

regarding how to arrange instructions of the transactions to create error free

concurrent schedules. This brings us to our next topic, the concept of

Serializability.

10.8 Serializability

When several concurrent transactions are trying to access the same data item,

the instructions within these concurrent transactions must be ordered in some

way so as there are no problem in accessing and releasing the shared data

item. There are two aspects of serializability which are described here:

 Introduction to Transactions
NOTES

 Self-Instructional Material
 125

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Conflict Serializability

Two instructions of two different transactions may want to access the same

data item in order to perform a read/write operation. Conflict Serializability

deals with detecting whether the instructions are conflicting in any way, and

specifying the order in which these two instructions will be executed

in case there is any conflict. A conflict arises if at least one (or both) of the

instructions is a write operation. The following rules are important in Conflict

Serializability:

1. If two instructions of the two concurrent transactions are both for read

operation, then they are not in conflict, and can be allowed to take

place in any order.

2. If one of the instructions wants to perform a read operation and the

other instruction wants to perform a write operation, then they are in

conflict, hence their ordering is important. If the read instruction is

performed first, then it reads the old value of the data item and after

the

reading is over, the new value of the data item is written. It the write

instruction is performed first, then updates the data item with the new

value and the read instruction reads the newly updated value.

3.

If both the transactions are for write operation, then they are in

conflict but can be allowed to take place in any order, because the

transaction do not read the value updated by each other. However, the

value that persists in the data item after the schedule is over is the one

written by the instruction that performed the last write.

It may happen that we may want to execute the same set of transaction in a

different schedule on another day. Keeping in mind these rules, we may

sometimes alter parts of one schedule (S1) to create another schedule (S2) by

swapping only the non-conflicting parts of the first schedule. The conflicting

parts cannot be swapped in this way because the ordering of the conflicting

instructions is important and cannot be changed in any other schedule that is

derived from the first. If these two schedules are made of the same set of

transactions, then both S1 and S2 would yield the same result if the conflict

resolution rules are maintained while creating the new schedule. In that case

the schedule S1 and S2 would be called Conflict Equivalent.

View Serializability:

This is another type of serializability that can be derived by creating another

schedule out of an existing schedule, involving the same set of transactions.

These two schedules would be called View Serializable if the following rules

are followed while creating the second schedule out of the first.

Let us consider that the transactions T1 and T2 are being serialized to create

Introduction to Transaction
NOTES

Self-Instructional Material
126

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

two different schedules www.eazynotes.com Sabyasachi De Page No. 9

S1 and S2 which we want to be View Equivalent and both T1 and T2 wants

to access the same data item.

1. If in S1, T1 reads the initial value of the data item, then in S2 also, T1

should read the initial value of that same data item.

2. If in S1, T1 writes a value in the data item which is read by T2, then

in S2 also, T1 shouldwrite the value in the data item before T2 reads

it.

3. If in S1, T1 performs the final write operation on that data item, then

in S2 also, T1 should perform the final write operation on that data

item.

Except in these three cases, any alteration can be possible while creating S2

by modifying S1.

10.9 Implementation of Isolation:

In case multiple transactions are executing concurrently and trying to access a

sharable resource at the same time, the system should create an ordering in

their execution so that they should not create any anomaly in the value stored

at the sharable resource.

There are several ways to achieve this and the most popular one is using some

kind of locking mechanism. Again, if you have the concept of Operating

Systems, then you should remember the semaphores, how it is used by a

process to make a resource busy before starting to use it, and how it

is used to release the resource after the usage is over. Other processes

intending to access that same resource must wait during this time. Locking is

almost similar. It states that a transaction must first lock the data item that it

wishes to access, and release the lock when the accessing is no longer

required. Once a transaction locks the data item, other transactions wishing to

access the same data item must wait until the lock is released.

Precedence graph

A precedence graph, also named conflict graph and serializability graph,

is used in the context of concurrency control in databases.

The precedence graph for a schedule S contains: A node for each committed

Check Your Progress

1. What is a Transaction?

2. What is meant by Partially Committed state?

3. Define: Atomicity

 Introduction to Transactions
NOTES

 Self-Instructional Material
 127

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

transaction in S An arc from Ti to Tj if an action of Ti precedes and conflicts

with one of Tj's actions. Precedence graph example

A precedence graph of the schedule D, with 3 transactions. As there is a cycle

(of length 2; with two edges) through the committed transactions T1 and T2,

this schedule (history) is not Conflict serializability. Testing Serializability

with Precedence Graph The drawing sequence for the precedence graph:-

1. For each transaction Ti participating in schedule S, create a node

labelled Ti in the precedence graph. So the precedence graph contains

T1, T2, T3

2. For each case in S where Ti executes a write_item(X) then Tj

executes a read_item(X), create an edge (Ti → Tj) in the precedence

graph. This occursnowhere in the above example, as there is no read

after write.

3. For each case in S where Ti executes a read_item(X) then Tj executes

a write_item(X), create an edge (Ti → Tj) in the precedence graph.

This results in a directed edge from T1 to T2.

4. For each case in S where Ti executes a write_item(X) then Tj

executes a write_item(X), create an edge (Ti → Tj) in the precedence

graph. This results in directed edges from T2 to T1, T1 to T3, and T2

to T3.

5. The schedule S is conflict serializable if the precedence graph has no

cycles. As T1 and T2 constitute a cycle, then we cannot declare S as

serializable or not and serializability has to be checked

10.10 Answers to Check Your Progress Questions

1. A transaction is an event which occurs on the database. Generally a

transaction reads a value from the database or writes a value to the

database.

2. At any given point of time if the transaction is executing properly, then it

is going towards it COMMIT POINT. The values generated during the

execution are all stored in volatile storage.

Introduction to Transaction
NOTES

Self-Instructional Material
128

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

3. Atomicity means that either all of the instructions within the transaction

will be reflected in the database, or none of them will be reflected.

10.11 Summary

• A transaction reads a value from the database or writes a value to the

database.

• In a transaction involving two or more discrete pieces of information,

either all of the pieces are committed or none are known as atomicity.

• Durability is the ACID property which guarantees that transactions

that have committed will survive permanently.

• The transactions are executed in a preemptive, time shared method is

known as concurrent.

• Serializability is a concept that helps us to check which schedules are

serializable.

• A precedence graph, also named conflict graph and serializability

graph, is used in the context of concurrency control in databases.

10.12 Key Words

• A transaction is a unit of program execution that accesses and

possibly updates various data items.

• The initial state when the transaction has just started execution.

• COMMIT POINT is the transaction is executing properly

• The transaction fails for some reason is Failed state

• The ROLLBACK operation leads to Aborted state

• The transaction finally reaches the state Terminated either

committed or aborted

• The SERIALIZABLE isolation level is generally the safest and is

recommended for most transactions.

10.13 Self-Assessment Questions and Exercises

Short answer questions

1. Define: Transaction

2. Name of the Transaction states

3. What is the serializability?

4. Define: Precedence graph

Long answer questions

1. Describe the properties of Transaction

2. What are the implementation of atomicity and durability

3. Write short notes on

a. Conflict Serializability

b. View Serializability:

4. Describe the precedence graph with an example

10.14 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011

 Protocols
 NOTES

 Self-Instructional Material
 129

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

UNIT XI PROTOCOLS

Structure

11.1 Introduction

11.2 Objectives

11.3 Lock Based Protocols

11.4 Timestamp Based Protocols

11.5Validation Based Protocols

11.6 Multiple Granularity

11.7 Answers to Check Your Progress Questions

11.8 Summary

11.9 Key Words

11.10 Self-Assessment Questions and Exercises

11.11 Further Readings

11.1 Introduction

Concurrency control is the procedure in DBMS for managing simultaneous

operations without conflicting with each another. Concurrent access is quite

easy if all users are just reading data. There is no way they can interfere with

one another. Though for any practical database, would have a mix of reading

and WRITE operations and hence the concurrency is a challenge.

Concurrency control is used to address such conflicts which mostly occur with

a multi-user system. It helps you to make sure that database transactions are

performed concurrently without violating the data integrity of respective

databases. Therefore, concurrency control is a most important element for the

proper functioning of a system where two or multiple database transactions

that require access to the same data, are executed simultaneously.

11.2 Objectives

After reading this chapter, you can able to understand:

 Fundamentals of Concurrent transactions

 Uses and issues related to Concurrent transactions

 Protocols to manage concurrent transactions (Lock, time-stamp,

validation and etc.)

11.3 Lock Based Protocols

A more efficient way to gain this knowledge is to introduce a new class of

lock modes, called intention lock modes. If a node is locked in an intention

mode, explicit locking is done at a lower level of the tree (that is, at a finer

granularity).

Protocols
 NOTES

Self-Instructional Material
130

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Intention locks are put on all the ancestors of a node before that node is locked

explicitly. Thus, a transaction does not need to search the entire tree to

determine whether it can lock a node successfully. A transaction wishing to

lock a node—say, Q—must traverse a path in the tree from the root to Q.

While traversing the tree, the transaction locks the various nodes in an

intention mode.

There is an intention mode associated with shared mode, and there is one with

exclusive mode. If a node is locked in intention-shared (IS) mode, explicit

locking is being done at a lower level of the tree, but with only shared-mode

locks. Similarly, if a node is locked in intention-exclusive (IX) mode, then

explicit locking is being done at a lower level, with exclusive-ode or shared-

mode locks. Finally, if a node is locked in shared and intention-exclusive

(SIX) mode, the subtree rooted by that node is locked explicitly in shared

mode, and that explicit locking is being done at a lower level with exclusive-

mode locks. The compatibility function for these lock modes is shown as

follows

Table 11.1: Compatibility matrix

 IS IX S SIX X

IS True True True True False

IX True True false false False

S True False True False False

SIX True False false False False

X False false false false false

The multiple-granularity locking protocol uses these lock modes to ensure

serializability. It requires that a transaction Ti that attempts to lock a node Q

must follow these rules:

1. Transaction Ti must observe the lock-compatibility function of Figure

above.

2. Transaction Ti must lock the root of the tree first, and can lock it in

anymode.

3. Transaction Ti can lock a node Q in S or IS mode only if Ti currently has

the parent of Q locked in either IX or IS mode.

4. Transaction Ti can lock a node Q in X, SIX, or IX mode only if Ti currently

has the parent of Q locked in either IX or SIX mode.

5. Transaction Ti can lock a node only if Ti has not previously unlocked any

node (that is, Ti is two phase).

6. Transaction Ti can unlock a node Q only if Ti currently has none of the

children of Q locked.

 Protocols
 NOTES

 Self-Instructional Material
 131

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Locking: Top-Down and Bottom-up

Observe that the multiple-granularity protocol requires that locks be acquired

in top-down (root-to-leaf) order, whereas locks must be released in bottom-up

(leafto-root) order. As an illustration of the protocol:

• Suppose that transaction T21 reads record ra2 in file Fa . Then, T21 needs to

lock the database, area A1, and Fa in IS mode (and in that order), and finally

to lock ra2 in S mode.

• Suppose that transaction T22 modifies record ra9 in file Fa . Then, T22

needs to lock the database, area A1, and file Fa (and in that order) in IX mode,

and finally to lock ra9 in X mode.

• Suppose that transaction T23 reads all the records in file Fa . Then, T23

needs to lock the database and area A1 (and in that order) in IS mode, and

finally to lock Fa in S mode.

• Suppose that transaction T24 reads the entire database. It can do so after

locking the database in S mode.

11.4 Timestamp Based Protocols

Timestamp-Based Protocols

The locking protocols that we have described thus far determine the order

between every pair of conflicting transactions at execution time by the first

lock that both members of the pair request that involves incompatible modes.

Another method for determining the serializability order is to select an

ordering among transactions in advance. The most common method for doing

so is to use a timestamp-ordering scheme.

Timestamps

With each transaction Ti in the system, we associate a unique fixed timestamp,

denoted by TS (4). This timestamp is assigned by the database system before

the transaction Ti starts execution. If a transaction Ti has been assigned

timestamp TS(Ti), and a new transaction Q enters the system, then TS(4) <

TS(4).

There are two simple methods for implementing this scheme:

1. Use the value of the system clock as the timestamp; that is, a

transaction's timestamp is equal to the value of the clock when the

transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has

been assigned; that is, a transaction's timestamp is equal to the value

of the counter when the transaction enters the system.

Protocols
 NOTES

Self-Instructional Material
132

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

 The timestamps of the transactions determine the serializability order. Thus,

if TS (4) <TS(T), then the system must ensure that the produced schedule is

equivalent to a serial schedule in which transaction Ti appears before

transaction Q. To implement this scheme, we associate with each data item Q

two timestamp values: o W-timestamp (Q) denotes the largest timestamp of

any transaction that executed write (Q) successfully. o R-timestamp(8)

denotes the largest timestamp of any transaction that executed read(Q)

successfully. These timestamps are updated whenever a new read (Q) or write

(Q) instruction is executed.

11.5Validation Based Protocols

Validation-Based Protocols

In cases where a majority of transactions are read-only transactions, the rate of

conflicts among transactions may be low. Thus, many of these transactions, if

executed without the supervision of a concurrency-control scheme, would

nevertheless leave the system in a consistent state. A concurrency-control

scheme imposes overhead of code execution and possible delay of

transactions. It may be better to use an alternative scheme that imposes less

overhead. A difficulty in reducing the overhead is that we do not know in

advance which transactions will be involved in a conflict. To gain that

knowledge, we need a scheme for monitoring the system.

We assume that each transaction Ti executes in two or three different phases

in its lifetime, depending on whether it is a read-only or an update transaction.

The phases are, in order,

1. Read phase: During this phase, the system executes transaction Ti. It

reads the values of the various data items and stores them in variables

local to Ti. It performs all write operations on temporary local

variables, without updates of the actual database.

2. Validation phase: Transaction Ti performs a validation test to

determine whether it can copy to the database the temporary local

variables that hold the results of write operations without causing a

violation of serializability.

3. Write phase: If transaction Ti succeeds in validation (step2), then the

system applies the actual updates to the database. Otherwise, the

system rolls back Ti.

Each transaction must go through the three phases in the order shown.

However, all three phases of concurrently executing transactions can be

interleaved. To perform the validation test, we need to know when the various

 Protocols
 NOTES

 Self-Instructional Material
 133

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

phases of transactions4 took place. We shall, therefore, associate three

different timestamps with transaction Z:

1. Start (Ti), the time when I started its execution.

2. Validation (Ti), the time when 4 finished its read phase and started its

validation phase.

3. Finish (Ti), the time when fr finished its write phase.

We determine the serializability order by the timestamp-ordering technique,

using the value of the timestamp Validation (Ti). Thus, the value TS(Ti) =

Validation(Ti) and, if TS(Tj) < TS(Tk), then any produced schedule must be

equivalent to a serial schedule in which transaction Tj appears before

transaction Tk. The reason we have chosen Validation (Ti), rather than

Start(Ti), as the timestamp of transaction Ti is that we can expect faster

response time provided that conflict rates among transactions are indeed low.

The validation test for transaction Ti requires that, for all transactions Ti with

TS(Ti) < TS(Tj), one of the following two conditions must hold:

1. Finish (4) < Start (Q). Since I complete its execution before Q started, the

serializability order is indeed aintained.

2. The set of data items written by Ti does not intersect with the set of data

items read by Tj, and Ti completes its write phase before Tj starts its

validation phase (Start(Tj) < Finish(Ti) < Validation(Tj)). This condition

ensures that

T14 T15

read (B)

read(A)

<validate>

display (A+B)

read (B)

B:=B – 50

read (A)

A:=A+50

<validate>

write(B)

write(A)

Figure 11.2 schedule produced by using validation

the writes of Ti and Tj do not overlap. Since the writes of Ti do not affect the

read of Tj, and since Tj cannot affect the read of Ti, the serializability order is

indeed maintained.

As an illustration, consider again transactions T14 and T15. Suppose that

TS(T14) < TS(T15). Then, the validation phase succeeds in the schedule 5 in

Figure 16.15.Note that the writes to the actual variables are performed only

after the validation phase of T15. Thus, fia reads the old values of B and A,

and this schedule is serializable.

Protocols
 NOTES

Self-Instructional Material
134

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The validation scheme automatically guards against cascading rollbacks, since

the actual writes take place only after the transaction issuing the write has

committed. However, there is a possibility of starvation of long transactions,

due to a sequence of conflicting short transactions that cause repeated restarts

of the long transaction. To avoid starvation, conflicting transactions must be

temporarily blocked, to enable the long transaction to finish.

This validation scheme is called the optimistic concurrency-control scheme

since transactions execute optimistically, assuming they will be able to finish

execution and validate at the end. In contrast, locking and timestamp ordering

are pessimistic in that they force a wait or a rollback whenever a conflict is

detected, even though there is a chance that the schedule may be conflict

serializable.

11.6 Multiple Granularity

Multiple Granularity

In the concurrency-control schemes described thus far, we have used each

individual data item as the unit on which synchronization is performed.

There are circumstances, however, where it would be advantageous to group

several data items, and to treat them as one individual synchronization unit.

For example, if a transaction Ti needs to access the entire database, and a

locking protocol is used, then Ti must lock each item in the database. Clearly,

executing these locks is time-consuming. It would be better if Ti could issue a

single lock request to lock the

Figure 11.3 Granularity hierarchy

entire database. On the other hand, if transaction Ti needs to access only a few

data items, it should not be required to lock the entire database, since

Check Your Progress

1. What is called as Locking protocol?

2. What is MGL?

3. What is meant by Concurrency control?

 Protocols
 NOTES

 Self-Instructional Material
 135

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

otherwise concurrency is lost. What is needed is a mechanism to allow the

system to define multiple levels of granularity. We can make one by allowing

data items to be of various sizes and defining a hierarchy of data granularities,

where the small granularities are nested within larger ones. Such a hierarchy

can be represented graphically as a tree. Note that the tree that we describe

here is significantly different from that used by the tree protocol .A non leaf

node of the multiple-granularity tree represents the data associated with its

descendants. In the tree protocol, each node is an independent data item.

As an illustration, consider the tree of Figure 11.3, which consists of four

levels of nodes. The highest level represents the entire database. Below it are

nodes of type area; the database consists of exactly these areas. Each area in

turn has nodes of type file as its children. Each area contains exactly those

files that are its child nodes. No file is in more than one area. Finally, each file

has nodes of type record. As before, the file consists of exactly those records

that are its child nodes, and no record can be present in more than one file.

Each node in the tree can be locked individually. As we did in the two-phase

locking protocol, we shall use shared and exclusive lock modes. When a

transaction locks a node, in either shared or exclusive mode, the transaction

also has implicitly locked all the descendants of that node in the same lock

mode. For example, if transaction Ti gets an explicit lock on file Fc of Figure

11.3, in exclusive mode, then it has an implicit lock in exclusive mode on all

the records belonging to that file. It does not need to lock the individual

records of Fc explicitly.

Suppose that transaction Ti wishes to lock record rb6 of file Fb. Since Ti has

locked Fb explicitly, it follows that rb6 is also locked (implicitly). But, when Tj

issues a lock request for rb6, rb6 is not explicitly locked→ How does the system

determine whether Tj can lock rb6 ? Tj must traverse the tree from the root to

record rb6.If any node in that path is locked in an incompatible mode, then Tj

must be delayed.

Table 11.3 Transaction States

 IS IX S SIX X

IS True True True True False

IX True True False false False

S True False True False False

SIX True False False False False

X False false False false false

Suppose now that transaction Tk wishes to lock the entire database. To do so,

it simply must lock the root of the hierarchy. Note, however, that Tk should

not succeed in locking the root node, since Ti is currently holding a lock on

part of the tree (specifically, on file Fb). But how does the system determine if

the root node can be locked? One possibility is for it to search the entire tree.

This solution, however, defeats the whole purpose of the multiple-granularity

Protocols
 NOTES

Self-Instructional Material
136

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

locking scheme. A more efficient way to gain this knowledge is to introduce a

new class of lock modes, called intention lock modes. If a node is locked in an

intention mode, explicit locking is being done at a lower level of the tree (that

is, at a finer granularity). Intention locks are put on all the ancestors of a node

before that node is locked explicitly. Thus, a transaction does not need to

search the entire tree to determine whether it can lock a node successfully. A

transaction wishing to lock a node-say, Q-must traverse a path in the tree from

the root to Q. While traversing the tree, the transaction locks the various nodes

in an intention mode.

There is an intention mode associated with shared mode, and there is one with

exclusive mode. If a node is locked in intention-shared (IS) mode, explicit

locking is being done at a lower level of the tree, but with only shared-mode

locks. Similarly, if a node is locked in intention-exclusive (IX) mode, then

explicit locking is being done at a lower level, with exclusive-mode or shared-

mode locks. Finally, if a node is locked in shared and intention-exclusive

(SIX) mode, the subtree rooted by that node is locked explicitly in shared

mode, and that explicit locking is being done at a lower level with exclusive-

mode locks. The multiple-granularity locking protocol, which ensures

serializability, is this:

Each transaction Ti can lock a node Q by following these rules:

1. It must observe the lock-compatibility function

2. It must lock the root of the tree first, and can lock it in any mode.

3. It can lock a node Q in S or IS mode only if it currently has the parent

of Q locked in either IX or IS mode.

4. It can lock a node Q in X, SIX, or IX mode only if it currently has the

parent of Q locked in either IX or SIX mode.

5. It can lock a node only if it has not previously unlocked any node

(that is, 4 is two phase).

6. It can unlock a node Q only if it currently has none of the children of

Q locked

Observe that the multiple-granularity protocol requires that locks be acquired

in top down (root-to-leaf) order, whereas locks must be released in bottom-up

(leaf-to-root) order.

 Suppose that transaction T18 reads record ra2, in file Fa. Then, T18

needs to lock the database, areaA1, and Fa in IS mode (and in that

order), and finally to lock ra2, in S mode.

 Suppose that transaction T19 modifies record ra9 in file Fa. Then, T19

needs to lock the database, area A1, and file Fa in IX mode, and finally

to lock ra9 in X mode.

 Suppose that transaction T20 reads all the records in fiie Fa. Then, T20

needs to lock the database and area A1 (in that order) in IS mode, and

finally to lock Fa in S mode.

 Suppose that transaction T2l reads the entire database. It can do so

after locking the database in S mode.

 Protocols
 NOTES

 Self-Instructional Material
 137

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

We note that transactions T18, T20, and 721 can access the database

concurrently. Tansaction T19 can execute concurrently with T18 is, but not with

either T20 or T21. This protocol enhances concurrency and reduces lock

overhead. It is particularly useful in applications that include a mix of

 Short transactions that access only a few data items

 Long transactions that produce reports from an entire file or set of

files

There is a similar locking protocol that is applicable to database systems in

which data granularities are organized in the form of a directed acyclic graph.

Seethe bibliographical notes for additional references. Deadlock is possible in

the protocol that we have, as it is in the two-phase locking protocol. There are

techniques to reduce deadlock frequency in the multiple-granularity protocol,

and also to eliminate deadlock entirely. These techniques are referenced in the

bibliographical notes.

11.7 Answers to Check Your Progress Questions

1. The protocol that indicates when a transaction may lock and unlock each

of the data items is called as locking protocol. Locking protocols restrict

the number of schedules.

2. Multiple granularity locking (MGL) is a locking method used in database

management systems (DBMS) and relational databases. In MGL, locks

are set on objects that contain other objects. A lock on such as a shared or

exclusive lock locks the targeted node as well as all of its descendants.

3. Concurrency control is the procedure in DBMS for managing

simultaneous operations without conflicting with each another.

11.8 Summary

• Lock-based protocols allow transactions to obtain a lock on every object

before a 'write' operation is performed.

• The protocol uses either system time or logical counter as a timestamp

protocol

• Validation based protocol is used to avoiding concurrency in

transactions

• Validation scheme is called the optimistic concurrency-control scheme

• Multiple granularity locking is usually used with non-strict two-phase

locking to guarantee serializability

11.9 Key Words

• A more efficient way to gain this knowledge is to introduce a new class of

lock modes, called intention lock modes.

• The multiple-granularity locking protocol uses these lock modes to ensure

serializability
• The value of the system clock as the timestamp

• The timestamps of the transactions determine the serializability order

Protocols
 NOTES

Self-Instructional Material
138

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

• A concurrency-control scheme imposes overhead of code execution and

possible delay of transactions

• The multiple-granularity tree represents the data associated with its

descendants

11.10 Self-Assessment Questions and Exercises

Short Answer Questions

1. What is meant by lock based protocols?

2. Define: Timestamp

3. What are validation based protocols?

Long Answer Questions

1. Explain the working of Lock Based Protocols

2. Discuss about Timestamp Protocols

3. Describe the Multiple Granularity

11.11 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011

Recovery and Atomicity
 NOTES

 Self-Instructional Material
 139

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

UNIT XII RECOVERY AND ATOMICITY

Structure

12.1 Introduction

12.2 Objectives

12.3 Log- Based Recovery

12.4 Recovery with Concurrent Transactions

12.5 Buffer Management

12.6 Failure with loss of non-volatile storage

12.7Advance Recovery systems

12.8 Remote Backup systems

12.9 Answers to Check Your Progress Questions

12.10 Summary

12.11 Key Words

12.12 Self-Assessment Questions and Exercises

12.13 Further Readings

12.1 Introduction

DBMS is a highly complex system with hundreds of transactions being

executed every second. The durability and robustness of a DBMS depends on

its complex architecture and its underlying hardware and system software. If it

fails or crashes amid transactions, it is expected that the system would follow

some sort of algorithm or techniques to recover lost data. When a system

crashes, it may have several transactions being executed and various files

opened for them to modify the data items. Transactions are made of various

operations, which are atomic in nature. But according to ACID properties of

DBMS, atomicity of transactions as a whole must be maintained, that is, either

all the operations are executed or none.

12.2 Objectives

This chapter leads to understand:

 Various recovery techniques

 Buffer management

 Remote backup systems

12.3 Log- Based Recovery

The most widely used structure for recording database modifications is the

1og.The log is a sequence of log records, recording all the update activities in

the database. There are several types of log records. An update log record

describes a single database write. It has these fields:

Recovery and Atomicity

NOTES

Self-Instructional Material
140

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

• Transaction identifier is the unique identifier of the transaction that

performed the write operation.

• Data-item identifier is the unique identifier of the data item written.

Typically, it is the location on disk of the data item.

• Old value is the' value of the data item prior to the write.

• New value is the value that the data item will have after the write.

Other special log records exist to record significant events during transaction

processing, such as the start of a transaction and the commit or abort of a

transaction. We denote the various types of log records as:

• <Ti.start>. Transaction Ti has started.

• <Ti, Xj, V1, V2>. Transaction Ti has performed a write on data item Xj.

Xj had value V1 before the write, and will have value v2 after the

write.

• <Ti commit>. Transaction Ti has committed.

• <Ti abort >. Transaction Ti, has aborted.

Whenever a transaction performs a write, it is essential that the log record for

that write be created before the database is modified. Once a log record exists,

we can output the modification to the database if that is desirable. Also, we

have the ability to undo a modification that has already been output to the

database. We undo it by using the old-value field in log records.

For log records to be useful for recovery from system and disk failures, the

log must reside in stable storage. For now, we assume that every log record is

written to the end of the log on stable storage as soon as it is created.

12.4 Recovery with Concurrent Transactions

Recovery with Concurrent Transactions

Until now, we considered recovery in an environment where only a single

transaction at a time is executing. We now discuss how we can modify and

extend the log-based recovery scheme to deal with multiple concurrent

transactions. Regardless of the number of concurrent transactions, the system

has a single disk buffer and a single tog. All transactions share the buffer

blocks. We allow immediate modification, and permit a buffer block to have

data items updated by one or more transactions.

12.4.1 Interaction with Concurrency Control

The recovery scheme depends greatly on the concurrency-control scheme that

is used. To roll back a failed transaction, we must undo the updates performed

by the transaction. Suppose that a transaction T0 has to be rolled back, and a

data item Q that was updated by T0 has to be restored to its old value. Using

the log-based schemes for recovery, we restore the value by using the undo

Recovery and Atomicity
 NOTES

 Self-Instructional Material
 141

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

information in a log record. Suppose now that a second transaction T1 has

performed yet another update on Q before T0 is rolled back. Then, the update

performed by T1 will be lost if T0 is rolled back.

Therefore, we require that, if a transaction T has updated a data item Q, no

other transaction may update the same data item until T has committed or

been rolled back. We can ensure this requirement easily by using strict two-

phase locking-that is, two-phase locking with exclusive locks held until the

end of the transaction.

12.4.2 Transaction Rollback

We roll back a failed transaction, Ti, by using the log. The system scans the

log backward; for every log record of the form <Ti, Xj, V1, V2) found in the

log, the system restores the data item Xj to its old value V1. Scanning of the

log terminates when the log record< Ti, start> is found.

scanning the log backward is important, since a transaction may have updated

a data item more than once. As an illustration, consider the pair of log records

<Ti, A, 10, 20>

<Ti, A, 20, 30>

 The log records represent a modification of data item A by Ti, followed by

another modification of A by Ti. Scanning the log backward sets , 4 correctly

to 10. If the log were scanned in the forward direction, A would be set to 20,

which is incorrect.

If strict two-phase locking is used for concurrency control, locks held by a

transaction T may be released only after the transaction has been rolled back

as described. Once transaction T (that is being rolled back) has updated a data

item, no other transaction could have updated the same data item. Therefore,

restoring the old value of the data item will not erase the effects of any other

transaction.

12.4.3 Checkpoints

We used checkpoints to reduce the number of log records that the system must

scan when it recovers from a crash. Since we assumed no concurrency, it was

necessary to consider only the following transactions during recovery:

 Those transactions that started after the most recent checkpoint

 The one transaction, if any, that was active at the time of the most

recent check-point.

 The situation is more complex when transactions can execute concurrently,

since several transactions may have been active at the time of the most recent

checkpoint. In a concurrent transaction-processing system, we require that the

check point log record be of the form <checkpoint L>, where L is a list of

transactions active at the time of the checkpoint. Again, we assume that

Recovery and Atomicity

NOTES

Self-Instructional Material
142

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

transactions do not perform updates either on the buffer blocks or on the log

while the checkpoint is in progress. The requirement that transactions must

not perform any updates to buffer blocks or to the log during checkpointing

can be bother some, since transaction processing will have to halt while a

checkpoint is in progress. A fuzzy checkpoint is a checkpoint where

transactions are allowed to perform updates even while buffer blocks

are being written out.

12.4.4 Restart Recovery

When the system recovers from a crash, it constructs two lists: The undo-list

consists of transactions to be undone, and the redo-list consists of transactions

to be redone.

The system constructs the two lists as follows: initially, they are both empty.

The system scans the log backward, examining each record, until it finds the

first <checkpoint>record:

For each record found of the form <Ti commit>, it adds Ti to redo-list.

For each record found of the form < Ti Start>, if Tt is not in redo-list, then it

adds Ti to undo-list

When the system has examined all the appropriate log records, it checks the

list L in the checkpoint record. For each transaction Ti in L, if Ti is not in

redo-list then it adds 4 to the undo-list.

Once the redo-list and undo-list have been constructed, the recovery proceeds

as follows:

1. The system rescans the log from the most recent record backward, and

performs an undo for each log record that belongs to transaction Ti on the

undo list. Log records of transactions on the redo-list are ignored in this

phase. The scan stops when the < Ti start> records have been found for

every transaction Ti in the undo-list.

2. The system locates the most recent<checkpoint L> record on the log.

Notice that this step may involve scanning the log forward, if the

checkpoint record was passed in step 1.

3. The system scans the log forward from the most recent<checkpointL>

record, and performs redo for each log record that belongs to a

transaction Ti that is on the redo-list. It ignores1ogrecordsof transactions

on the undo-list in this phase.

It is important in step 1 to process the log backward, to ensure that the

resulting state of the database is correct.

Recovery and Atomicity
 NOTES

 Self-Instructional Material
 143

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

After the system has undone all transactions on the undo-list, it redoes those

transactions on the redo-list. It is important, in this case, to process the log

forward. When the recovery process has completed, transaction processing

resumes.

It is important to undo the transaction in the undo-list before redoing

transactions in the redo-list, using the algorithm in steps 1 to B; otherwise, a

problem may occur. Suppose that data item A initiatty has the value

10.Suppose that a transaition I updated data item A to 20and

aborted;transactionrollback would restoreA to the value 10.Supposethat

another transactionQ. then updated data item,4 to 30 and committed,

following which the system crashed.The stateof the log at the time of the

crash is

<Ti, A, 10, 20>

<Tj, A, 10, 30>

< Tj commit>

If the redo pass is performed first, A wilt be set to 30; then, in the undo pass,A

will be set to 10,which is wrong. The final value of Q should be 30, which we

can ensure by performing undo before performing redo.

12.5 Buffer Management

In this section, we consider several subtle details that are essential to the

implementation of a crash-recovery scheme that ensures data consistency and

imposes a minimal amount of overhead on interactions with the database.

12.5.1 Log-Record Buffering

So far, we have assumed that every log record is output to stable storage at the

time it is created. This assumption imposes a high overhead on system

execution for several reasons: Typically, output to stable storage is in units of

blocks. In most cases, a log record is much smaller than a block. Thus, the

output of each log record translates to

The cost of outputting a block to stable storage is sufficiently high that it is

desirable to output multiple log records at once. To do so, we write log

records to a log buffer in main memory, where they stay temporarily until

they are output to stable storage. Multiple log record scan be gathered in the

log buffer, and output to stable storage in a single output operation. The order

of log records in the stable storage must be exactly the same as the order in

which they were written to the log buffer. As a result of log buffering, a log

record may reside in only main memory (volatile storage) for a considerable

Recovery and Atomicity

NOTES

Self-Instructional Material
144

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

time before it is output to stable storage. Since such log records are lost if the

system crashes, we must impose additional requirements on the recovery

techniques to ensure transaction atomicity:

Transaction Ti enters the commit state after the <Ti commit> log record has

been output to stable storage.

• Before the <Ti commit> log record can be output to stable storage, all

log records pertaining to transaction I must have been output to stable

storage.

• Before a block of data in main memory can be output to the

database(in nonvolatile storage),all log records pertaining to data in

that block must have been output to stable storage.

This rule is called the write-ahead logging WAL) rule. (Strictly speaking,

the WAL rule requires only that the undo information in the log have been

output to stable storage, and permits the redo information to be written later.

The difference is relevant in systems where undo information and redo

information are stored in separate log records.) The three rules state situations

in which certain log records must have been output to stable storage. There is

no problem resulting from the output of log records earlier than necessary.

Thus, when the system finds it necessary to output a log record to stable

storage, it outputs an entire block of log records, if there are enough log

records in main memory to fill a block. If there are insufficient log records to

fill the block, all log records in main memory are combined into a partially

full block, and are output to stable storage. Writing the buffered log to disk is

sometimes referred to as a log force.

12.5.2 Database Buffering

We described the use of a two-level storage hierarchy. The system stores the

database in non volatile storage (disk), and brings blocks of data into main

memory as needed. Since main memory is typically much smaller than the

entire database, it may be necessary to overwrite a block B1 in main memory

when another block B2 needs to be brought into memory. If Br has been

modified, Bl must be output prior to the input of B2.

The rules for the output of log records limit the freedom of the system to

output blocks of data. If the input of block B2 causes blocks B1 to be chosen

for output, all log records pertaining to data in .B1 must be output to stable

storage before B1 is output. Thus, the sequence of actions by the system would

be:

 Output log records to stable storage until all log records pertaining to

block B1 have been output.

 Output block B1 to disk.

 Input block B2 from disk to main memory.

Recovery and Atomicity
 NOTES

 Self-Instructional Material
 145

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

It is important that no writes to the block B1 be in progress while the system

carries out this sequence of actions. We can ensure that there are no writes in

progress by using a special means of locking: Before a transaction performs a

write on a data item, it must acquire an exclusive lock on the block in which

the data item resides. The lock can be released immediately after the update

has been performed. Before a block is output, the system obtains an exclusive

lock on the block, to ensure that no transaction is updating the block. It

releases the lock once the block output has completed. Locks that are held for

a short duration are often called latches. Latches are treated as distinct from

locks used by the concurrency-control system. As a result, they may be

released without regard to any locking protocol, such as two-phase locking,

required by the concurrency-control system.

To illustrate the need for the write-ahead logging requirement,

consider our banking example with transactions T0 and T1. Suppose that the

state of the log is

<70 start>

<T0, A, 1000, 950>

and that transactionT0 issues a read(B).Assume that the block on which B

resides is not in main memory, and that main memory is full. Suppose that the

block on which A resides is chosen to be output to disk. If the system outputs

this block to disk and then a crash occurs, the values in the database for

accounts A, B, and C are $950, $2000, and $700, respectively. This database

state is inconsistent. However, because of the WAL requirements, the log

record

<Ts, A,1000, 950>

must be output to stable storage prior to output of the block on which A

resides. The system can use the log record during recovery to bring the

database back to a consistent state.

12.5.3 Operating System Role in Buffer Management

We can manage the database buffer by using one of two approaches:

1. The database system reserves part of main memory to serve as a buffer that

it, rather than the operating system, manages.

This approach has the drawback of limiting flexibility in the use of main

memory. The buffer must be kept small enough that other applications have

sufficient main memory available for their needs. Flow ever, even when the

other applications are not running, the database will not be able to make use of

all the available memory. Likewise, non database applications may not use

that part of main memory reserved for the database buffer, even if some of the

pages in the database buffer are not being used.

Recovery and Atomicity

NOTES

Self-Instructional Material
146

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

2. The database system implements its buffer within the virtual memory

provided by the operating system. Since the operating system knows about the

memory requirements of all processes in the system, ideally it should be in

charge of deciding what buffer blocks must be force-output to disk, and when.

The operating systems could not write out the database buffer pages itself, but

instead should request the database system to force-output the buffer blocks.

The database system in turn would force-output the buffer blocks to the

database, after writing relevant log records to stable storage.

Unfortunately, almost all current-generation operating systems retain

complete control of virtual memory. The operating system reserves space on

disk for storing virtual-memory pages that are not currently in main memory;

this space is called swap space. If the operating system decides to output a

block Bx , that block is output to the swap space on disk, and there is no way

for the database system to get control of the output of buffer blocks.

Therefore, if the database buffer is in virtual memory, transfers

between database files and the buffer in virtual memory must be managed by

the database system, which enforces the write-ahead logging requirements

that we discussed.

This approach may result in extra output of data to disk. If a block Bx

 is output by the operating system, that block is not output to the

database. Instead, it is output to the swap space for the operating system's

virtual memory. When the database system needs to output Bx, the operating

system may need first to input Bx from its swap space. Thus, instead of a

single output of Bx, there may be two outputs of B, (one by the operating

system, and one by the database system)and one extra input of Bx.

Although both approaches suffer from some drawbacks, one or the

other must be chosen unless the operating system is designed to support the

requirements of database logging. Only a few current operating systems, such

as the Mach operating system, support these requirements.

12.6 Failure with loss of non-volatile storage

Failure with Loss of Nonvolatile Storage

Until now, we have considered only the case where a failure results in the loss

of information residing in volatile storage while the content of the nonvolatile

storage remains intact. Although failures in which the content of nonvolatile

storage is lost are rare, we nevertheless need to be prepared to deal with this

type of failure. In this section, we discuss only disk storage. Our discussions

apply as well to other nonvolatile storage types.

Recovery and Atomicity
 NOTES

 Self-Instructional Material
 147

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

The basic scheme is to dump the entire contents of the database to stable

storage periodically-say, once per day. For example, we may dump the

database to one or more magnetic tapes. If a failure occurs that results in the

loss of physical database blocks, the system uses the most recent dump in

restoring the database to a previous consistent state. Once this restoration has

been accomplished, the system uses the log to bring the database system to the

most recent consistent state.

More precisely, no transaction may be active during the dump procedure, and

a procedure similar to checkpointing must take place:

1. Output all log records currently residing in main memory onto

Stable storage.

2. Output all buffer blocks onto the disk.

3. Copy the contents of the database to stable storage.

4. Output a log record<dump> onto the stable storage.

Steps1, 2, and 4 correspond to the three steps used for checkpoints

To recover from the loss of nonvolatile storage, the system restores the

database to disk by using the most recent dump. Then, it consults the log and

redoes all the transactions that have committed since the most recent dump

occurred. Notice that no undo operations need to be executed.

A dump of the database contents is also referred to as an archival dump, since

we can archive the dumps and use them later to examine old states of the

database. Dumps of a database and check pointing of buffers are similar.

The simple dump procedure described here is costly for the following two

reasons. First, the entire database must be copied to stable storage, resulting in

considerable data transfer. second, since transaction processing is halted

during the dump procedure, CPU cycles are wasted. Fazzy dump schemes

have been developed, which allow transactions to be active while the dump is

in progress. They are similar to fuzzy-checkpointing schemes; see the

bibliographical notes for more details.

12.7 Advance Recovery systems

Advanced Recovery Techniques

The recovery techniques described that once a transaction updates a data item,

no other transaction may update the same data item until the first commits or

is rolled back. We ensure the condition by using strict two-phase locking.

Although strict two-phase locking is acceptable for records in relations, a

Recovery and Atomicity

NOTES

Self-Instructional Material
148

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

significant decrease in concurrency when applied to certain specialized

structures, such as B+-tree index pages.

Several alternative recovery techniques, applicable even with early

lock release, have been proposed. These schemes can be used in a variety of

applications, not just for recovery of B
+
-trees. We first describe an advanced

recovery schemes supporting early lock release. We then outline the ARIES

recovery scheme, which is widely used in industry. ARIES is more complex

than our advanced recovery scheme, but incorporates a number of

optimizations to minimize recovery time, and provides a number of other

useful features.

Logical Undo Logging

For operations where locks are released early, we cannot perform the undo

actions by simply writing back the old value of the data items. Consider a

transaction T that inserts an entry into a B
+
-tree, and, following the B+-tree

concurrency-control protocol, releases some locks after the insertion operation

completes, but before the transaction commits. After the locks are released,

other transactions may perform further insertions or deletions, thereby causing

further changes to the B+-tree nodes.

Even though the operation releases some locks early, It must retain enough

locks to ensure that no other transaction is allowed to execute any conflicting

operation (such as reading the inserted value or deleting the inserted value).

For this reason/ the B+-tree concurrency - control protocol in Section16.9

holds locks on the leaf level of the B+-tree until the end of the transaction.

Now let us consider how to perform transaction rollback. If physical undo is

used, that is, the old values of the internal B+-tree nodes (before the insertion

operation was executed)are written back during transaction rollback, some of

the updates performed by later insertion or deletion operations executed by

other transactions could be lost. Instead, the insertion operation has to be

undone by a logical undo-that is, in this case, by the execution of a delete

operation.

Therefore, when the insertion operation completes, before it releases any

locks, it writes a log record <Ti, Oj, operation-end, U), where the U denotes

undo information and Oj denotes a unique identifier for (the instance of) the

operation. For example, if the operation inserted an entry in a B+-tree, the

undo information U would indicate that a deletion operation is to be

performed, and would identify the B+-tree and what to delete from the tree.

Such logging of information about operations is called logical logging. In

contrast, logging of old-value and new-value information is called physical

logging, and the corresponding log records are called physical log records.

The insertion and deletion operations are examples of a class of operations

that require logical undo operations since they release locks early; we call

Recovery and Atomicity
 NOTES

 Self-Instructional Material
 149

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

such operations logical operations. Before a logical operation begins, it writes

a log record <Ti,Oj, operation-begin>, where Oj is the unique identifier for the

operation. While the system is executing the operation, it does physical

logging in the normal fashion for all updates performed by the operation.

Thus, the usual old-value and new-value information is written out for each

update. When the operation finishes, it writes an operation-end log record as

described earlier.

Transaction Rollback

First consider transaction rollback during normal operation (that is, not during

recovery from system failure). The system scans the log backward and uses

log records belonging to the transaction to restore the old values of data items.

Unlike rollback in normal operation, however, rollback in our advanced

recovery scheme writes out special redo-only log records of the form <Ti, Xj,

V> containing the value v being restored to data item Xj during the rollback.

These log records are sometimes called compensation log records. Such

records do not need undo information, since we will never need to undo such

an undo operation.

Whenever the system finds a log record <Ti,Oj, operation-end, U>, it takes

special actions:

1. It rolls back the operation by using the undo information U in the log

record. It logs the updates performed during the rollback of the operation just

like updates performed when the operation was first executed .In other words,

the system logs physical undo information for the updates performed during

rollback, instead of using compensation log records. This is because a crash

may occur while a logical undo is in progress, and on recovery the system

has to complete the logical undo; to do so, restart recovery will undo the

partial effects of the earlier undo, using the physical undo information.

At the end of the operation rollback, instead of generating a tog record

<Ti, Oj, operation-end, U>, the database system generates a log record <Ti,

Oi, operation-abort>.

2. When the backward scan of the log continues, the system skips all log

records of the transaction until it finds the log record <Ti, Oj, operation-

begin>. After it finds the operation-begin log record, it processes log records

of the transaction in the normal manner again.

Observe that skipping over physical log records when the operation-endlog

record is found during rollback ensures that the old values in the physical log

record are not used for rollback, once the operation completes.

If the system finds a record <Ti,Oj, operation-abort>,it skips all preceding

records until it finds the record <Ti,Oj, operation-begin>. These preceding log

Recovery and Atomicity

NOTES

Self-Instructional Material
150

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

records must be skipped to prevent multiple rollback of the same operation, in

case there had been a crash during an earlier rollback, and the transaction had

already been partly rolled back. When the transaction of; has been rolled back,

the system adds a record <Ti abort> to the log.

If failures occur while a logical operation is in progress, the operation-end log

record for the operation will not be found when the transaction is rolled back.

However, for every update performed by the operation, undo information-in

the form of the old value in the physical log records-is available in the log.

The physical log records will be used to roll back the incomplete operation.

12.8 Remote Backup Systems

Remote Backup Systems

Traditional transaction-processing systems are centralized or client-server

systems. Such systems are vulnerable to environmental disasters such as fire,

flooding, or earthquakes. Increasingly, there is a need for transaction-

processing systems that can function in spite of system failures or

environmental disasters. Such systems must provide high availability, that is,

the time for which the system is unusable must be extremely small.

We can achieve high availability by performing transaction processing at one

site, called the primary site, and having a remote backup site where all the

data from the primary site are replicated. The remote backup site is sometimes

also called the secondary site. The remote site must be kept synchronized with

the primary site, as updates are performed at the primary. We achieve

synchronization by sending all log records from primary site to the remote

backup site. The remote backup site must be physically separated from the

primary-for example, we can locate it in a different state-so that a disaster at

the primary does not damage the remote backup site.

When the primary site fails, the remote backup site takes over processing.

First, however, it performs recovery, using its (perhaps outdated) copy of the

data from the primary, and the log records received from the primary. In

effect, the remote backup site is performing recovery actions that would have

been performed at the primary site when the latter recovered. Standard

recovery algorithms, with minor modifications, can be used for recovery at the

remote backup site. Once recovery has been performed, the remote backup

site starts processing transactions.

Check Your Progress

1. Define: Log

2. What is meant by Checkpoint?

3. What are concurrent transactions?

Recovery and Atomicity
 NOTES

 Self-Instructional Material
 151

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

Availability is greatly increased over a single-site system, since the system

can recover even if all data at the primary site are lost. The performance of a

remote backup system is better than the performance of a distributed system

with two-phase commit.

Figure 12.1 Architecture of remote backup system

Several issues must be addressed in designing a remote backup system:

 Detection of failure. As in failure-handling protocols for distributed

system,it is important for the remote backup system to detect when the

primary has failed. Failure of communication lines can fool the remote backup

into believing that the primary has failed. To avoid this problem, we maintain

several communication links with independent modes of failure between the

primary and the remote backup. For example, in addition to the network

connection, there may be a separate modem connection over a telephone line,

with services provided by different telecommunication companies. These

connections may be backed up via manual intervention by operators, who can

communicate over the telephone system.

 Transfer of control. When the primary fails, the backup site takes

over processing and becomes the new primary. When the original primary site

recovers, it can either play the role of remote backup, or take over the role of

primary site again. In either case, the old primary must receive a log of

updates carried out by the backup site while the old primary was down,

The simplest way of transferring control is for the old primary to receive

redo logs from the old backup site, and to catch up with the updates by

applying them locally. The old primary can then act as a remote backup site.

If control must be transferred back, the old backup site can pretend to have

failed, resulting in the old primary taking over.

 Time to recover. If the log at the remote backup grows large,

recovery will take a long time. The remote backup site can periodically

process the redo log records that it has received, and can perform a

checkpoint, so that earlier parts of the log can be deleted. The delay before the

remote backup takes over can be significantly reduced as a result.

Recovery and Atomicity

NOTES

Self-Instructional Material
152

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

A hot-spare configuration can make takeover by the backup site

almost instantaneous. In this configuration, the remote backup site continually

processes redo log records as they arrive, applying the updates locally. As

soon as the failure of the primary is detected, the backup site completes

recovery by rolling back incomplete transactions; it is then ready to process

new transactions.

 Time to commit. To ensure that the updates of a committed

transaction are durable, a transaction must not be declared committed until its

log records have reached the backup site. This delay can result in a longer

wait to commit a transaction and some systems therefore permit lower degrees

of durability.

The degrees of durability can be classified as follows.

 One-safe. A transaction commits as soon as its commit log record is

written to stable storage at the primary site. The problem with this

scheme is that the updates of a committed transaction may not have

made it to the backup site, when the backup site takes over

processing. Thus, the updates may appear to be lost. When the

primary site recovers, the lost updates cannot be merged in directly,

since the updates may conflict with later updates performed at the

backup site. Thus, human intervention may be required to bring the

database to a consistent state.

 Two-very-safe. A transaction commits as soon as its commit log

record is written to stable storage at the primary and the backup site.

The problem with this scheme is that transaction processing cannot

proceed if either the primary or the backup site is down. Thus,

availability is actually less than in the single-site case, although the

probability of data loss is much less.

 Two-safe. This scheme is the same as two-very-safe if both primary

and backup sites are active. If only the primary is active, the

transaction is allowed to commit as soon as its commit log record is

written to stable storage at the primary site.

This scheme provides better availability than does two-very-safe, while

avoiding the problem of lost transactions faced by the one-safe scheme.

It results in a slower commit than the one-safe scheme, but the benefits

generally outweigh the cost. Several commercial shared-disk systems provide

a level of fault tolerance that is intermediate between centralized and remote

backup systems. In these commercial systems, the failure of a CPU does not

result in system failure. Instead, other CPUs take over and they carry out

recovery. Recovery actions include rollback of transactions running on the

failed CPU, and recovery of locks held by those transactions.

Since data are on a shared disk, there is no need for transfer of log records.

Recovery and Atomicity
 NOTES

 Self-Instructional Material
 153

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

However, we should safe guard the data from disk failure by using, for

example, a RAID disk organization.

An alternative way of achieving high availability is to use a distributed

database, with data replicated at more than one site. Transactions are then

required to update all replicated of any data item that they update.

12.9 Answers to Check Your Progress Questions

1. The most widely used structure for recording database modifications is

the log

2. Checkpoint is a process that writes current in-memory dirty pages

(modified pages) and transaction log records to physical disk.

3. In a multiprogramming environment where multiple transactions can be

executed simultaneously, it is highly important to control the

concurrency of transactions.

12.10 Summary

• The log is a sequence of log records, recording all the update

activities in the database

• Using checkpoints to reduce the number of log records that the

system must scan when it recovers from a crash.

• A database buffer is a temporary storage area in memory used to hold

a copy of a database block.

• The basic scheme is to dump the entire content of the database to

stable memory periodically.

• The insertion operation has to be undone by a logical undo-that is, in

this case, by the execution of a delete operation.

• Rollback in advanced recovery scheme writes out special redo-only

log records of the form <Ti, Xj, V>

• The performance of a remote backup system is better than the

performance of a distributed system with two-phase commit.

12.11 Key Words

• Transaction identifier is the unique identifier of the transaction that

performed the write operation.

• Data-item identifier is the unique identifier of the data item written.

Typically, it is the location on disk of the data item.

• Old value is the' value of the data item prior to the write.

• New value is the value that the data item will have after the write.

• A fuzzy checkpoint is a checkpoint where transactions are allowed to

perform updates even while buffer blocks are being written out.

• Locks that are held for a short duration are often called latches

Recovery and Atomicity

NOTES

Self-Instructional Material
154

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

• The operating system reserves space on disk for storing virtual-

memory pages that are not currently in main memory; this space is

called swap space.

12.12 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Log Based Recovery

2. What is meant by recovery with concurrent transactions?

3. Define: Checkpoints

4. What is called restart recovery?

Long Answer Questions:

1. Describe several fields of log based record

2. Explain about Buffer management

3. Describe the advanced recovery systems and remote backup systems

12.13 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011

 Data on External Storage
NOTES

 Self-Instructional Material
 155

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

UNIT XIII DATA ON EXTERNAL STORAGE

Structure

13.1 Introduction

13.2 Objectives

13.3 File Organization and Indexing

13.4 Cluster Indexes, Primary and Secondary Indexes

13.5 Index data Structures

13.6 Hash Based Indexing

13.7 Tree base Indexing

13.8 Comparison of File Organizations

13.9 Answers to Check Your Progress Questions

13.10 Summary

13.11 Key Words

13.12 Self-Assessment Questions and Exercises

13.13 Further Readings

13.1 Introduction

A database consists of a huge amount of data. The data is grouped within a

table in RDBMS, and each table has related records. A user can see that the

data is stored in form of tables, but in actual this huge amount of data is stored

in physical memory in form of files. A file is named collection of related

information that is recorded on secondary storage such as magnetic disks,

magnetic tables and optical disks. File Organization refers to the logical

relationships among various records that constitute the file, particularly with

respect to the means of identification and access to any specific record. In

simple terms, Storing the files in certain order is called file Organization. File

Structure refers to the format of the label and data blocks and of any logical

control record.

13.2 Objectives

After reading this chapter, you will be able to understand:

 File Organization and Indexing

 Indexes (Cluster Indexes, Primary and Secondary Indexes)

 Indexing (Hash Based, Tree based)

 Comparison of various File Organizations

13.3 File Organization and Indexing

File Organization and Indexing

A file is organized logically as a sequence of records. These records are

mapped on to disk blocks. Files are provided as basic construction operating

Data on External storage

NOTES

Self-Instructional Material
156

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

systems, so we shall assume the existence of an underlying file system. We

need to consider ways of representing logical data models in terms of files.

Although blocks are of a fixed size determined by the physical properties of

the disk and by the operating system, record sizes vary. In a relational

database, tuples of distinct relations are generally of different sizes.

One approach to mapping the database to files is to use several files, and to

store records of only one fixed length in any given file. An alternative is to

structure our files so that we can accommodate multiple lengths for records;

however, files of fixed length records are easier to implement than are files of

variable-length records. Many of the techniques used for the former can be

applied to the variable-length case. Thus, we begin by considering a file of

fixed-length records.

Organization of Records in Files

Heap file organization. Any record can be placed anywhere in the file where

there is space for the record. There is no ordering of records. Typically, there

is a single file for each relation.

Sequential file organization. Records are stored in sequential order,

according to the value of a "search key" of each record.

Hashing file organization. A hash function is computed on some attribute of

each record. The result of the hash function specifies in which block of the

file the record should be placed.

Basic Concept of Indexing:

An index for a file in a database system works in much the same way as the

index in this textbook. If we want to learn about a particular topic (specified

by u word or a phrase) in this textbook, we can search for the topic in the

index at the back of the book, find the pages where it occurs, and then read the

pages to find the information we are looking for. The words in the index are in

sorted order, making it easy to find the word we are looking for. Moreover,

the index is much smaller than the book, further reducing the effort needed to

find the words we are looking for.

Database-system indices play the same role as book indices in libraries. For

example, to retrieve an account record given the account number, the database

system would look up an index to find on which disk block the corresponding

record resides, and then fetch the disk block, to get the account record.

Keeping a sorted list of account numbers would not work well on very large

databases with millions of accounts, since the index would itself be very big;

further even though keeping the index sorted reduces the search time, finding

 Data on External Storage
NOTES

 Self-Instructional Material
 157

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

an account can still be rather time-consuming. Instead, more sophisticated

indexing techniques may be used.

There are two basic kinds of indices:

Ordered indices. Based on a sorted ordering of the values.

Hash indices. Based on a uniform distribution of values across a range of

buckets. The bucket to which a value is assigned is determined by a function,

called a hash function.

We shall consider several techniques for both ordered indexing and hashing.

No one technique is the best. Rather, each technique is best suited to particular

database applications. Each technique must be evaluated on the basis of these

factors:

Access types: The types of access that are supported efficiently. Access types

can include finding records with a specified attribute value and finding

records whose attribute values fall in a specified range.

Access time: The time it takes to find a particular data item, or set of items,

using the technique in question.

Insertion time: The time it takes to insert a new data item. This value

includes the time it takes to find the correct place to insert the new data item,

as well as the time it takes to update the index structure.

Deletion time: The time it takes to delete a data item. This value includes the

time it takes to find the item to be deleted, as well as the time it takes to

update the index structure.

Space overhead: The additional space occupied by an index structure.

Provided that the amount of additional space is moderate, it is usually

worthwhile to sacrifice the space to achieve improved performance.

13.4 Cluster Indexes, Primary and Secondary Indexes

Cluster Indexes, Primary and Secondary Indexes

To gain fast random access to records in a file, we can use an index structure.

Each index structure is associated with a particular search key. Just like the

index of a book or a library catalog, an ordered index stores the values of the

search keys in sorted order, and associates with each search key the records

that contain it.

The records in the indexed file may themselves be stored in some sorted

order, just as books in a library are stored according to some attribute such as

Data on External storage

NOTES

Self-Instructional Material
158

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

the Dewey decimal number. A file may have several indices, on different

search keys. If the file containing the records is sequentially ordered, a

clustering index is an index whose

Figure 13.1 Sequential file for account records

search key also defines the sequential order of the file. Clustering indices are

also called primary indices; the term primary index seems to denote an index

on a primary key, but such indices can in fact be built on any search key. The

search key of a clustering index is often the primary key, although that is not

necessarily so. Indices whose search key specifies an order different from the

sequential order of the file are called nonclustering indices, or secondary

indices. The terms "clustered, 'and "nonclustered" are often used in place of

"clustering" and "nonclustering.,'

we assume that all files are ordered sequentially on some search key. Such

files, with a clustering index on the search key, are called index-sequential

files. They represent one of the oldest index schemes used. in database

systems. They are designed for applications that require both sequential

processing of the entire file and random access to individual records.

Figure 12.1 shows a sequential file of account records taken from our banking

example. In the example of Figure 12.1, the records are stored in search-key

order with branch-name used as the search key.

Secondary Indices

Secondary indices must be dense, with an index entry for every search-key

value, and a pointer to every record in the file. A clustering index may be

sparse, storing only some of the search-key values, since it is always possible

to find records with intermediate search-key values by a sequential access to a

part of the file, as described earlier. If a secondary index stores only some of

the search-key values, records with intermediate search-key values may be

 Data on External Storage
NOTES

 Self-Instructional Material
 159

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

anywhere in the file and, in general, we cannot find them without searching

the entire file.

A secondary index on a candidate key looks just like a dense clustering index,

except that the records pointed to by successive values in the index are not

stored sequentially. In general, however, secondary indices may have a

different structure from clustering indices. If the search key of a clustering

index is not a candidate key, it suffices if the index points to the first record

with a particular value for the search key, since the other records can be

fetched by a sequential scan of the file.

In contrast, if the search key of a secondary index is not a candidate key, it is

not enough to point to just the first record with each search-key value. The

remaining records with the same search-key value could be anywhere in the

file, since the records are ordered by the search key of the clustering index,

rather than by the search key of the secondary index. Therefore, a secondary

index must contain pointers to all the records.

We can use an extra level of indirection to implement secondary indices on

search keys that are not candidate keys. The pointers in such a secondary

index do not point directly to the file. Instead, each points to a bucket that

contains pointers to the file.

Figure 13.2 Secondary index on account file, on noncandidate key

balance

A sequential scan in clustering index order is efficient because records in the

file are stored physically in the same order as the index order. However, we

cannot (except in rare special cases) store a file physically ordered by both the

search key of the clustering index and the search key of a secondary index.

Because secondary key order and physical-key order differ, if we attempt to

scan the file sequentially in secondary-key order, the reading of each record is

likely to require the reading of a new block from disk, which is very slow.

Data on External storage

NOTES

Self-Instructional Material
160

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

The procedure described earlier for deletion and insertion can also be applied

to secondary indices; the actions taken are those described for dense indices

storing a pointer to every record in the file. If a file has multiple indices,

whenever the file is modified, every index must be updated.

Secondary indices improve the performance of queries that use keys other

than the search key of the clustering index. However, they impose a

significant overhead on modification of the database. The designer of a

database decides which secondary indices are desirable on the basis of an

estimate of the relative frequency of queries and modifications

13.5 Index Data Structures

Index Definition in SQL

The SQL standard does not provide any way for the database user or

administrator to control what indices are created and maintained in the

database system. Indices are not required for correctness, since they are

redundant data structures. However, indices are important for efficient

processing of transactions, including both update transactions and queries.

Indices are also important for efficient enforcement bf integrity constraints.

In principle, a database system can decide automatically what indices to

create. Flow ever, because of the space cost of indices, as well as the effect of

indices on update processing, it is not easy to automatically make the right

choices about what indices to maintain. Therefore, most SQL-

implementations provide the programmer control over creation and removal

of indices via data-definition, language commands.

We illustrate the syntax of these commands next. Although the syntax that we

show is widely used and supported by many database systems, it is not part of

the SQL: 1999 standard. The SQL- standards (up to SQL: 1999, at least) do

not support control of the physical database schema, and have restricted

themselves to the logical database schema.

We create an index by the create index command, which takes the form

create index <index-name> on <relation-name> (<attribute-list>)

The attribute-list is the list of attributes of the relations that form the search

key for the index.

To define an index name branch-index on the branch relation with

branch_ name as the search key, we write

create ind,ex branch_indexon brnnch (branch,nqme)

 Data on External Storage
NOTES

 Self-Instructional Material
 161

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

 If we wish to declare that the search key is a candidate key, we add

the attribute unique to the index definition. Thus, the command

create unique index brsnchindexon branch(branch_nnme)

declares branch-name to be a candidate key for branch. If, at the time we enter

the create unique index command, branch-name is not a candidate key, the

system will display an error message, and the attempt to create the index will

fail. If the index creation attempt succeeds, any subsequent attempt to insert a

tuple that violates the key declaration will fail. Note that the unique feature is

redundant if the database system supports the unique declaration of the SQL

standard'

Many database systems also provide a way to specify the type of index to be

used (such as B
+

-tree or hashing). Some database systems also permit one of

the indices on a relation to be declared to be clustered; the system then stores

the relation sorted by the search-key of the clustered index.

The index name we specified for an index is required to drop an index. The

drop index command takes the form:

drop index <index-name)

13.6 Hash Based Indexing

Hash Indices

Hashing can be used not only for file organization, but also for index-structure

creation. A hash index organizes the search keys, with their associated

pointers, into a hash file structure. We construct a hash index as follows. We

apply a hash function on a search key to identify a bucket, and store the key

and its associated pointers in the bucket (or in overflow buckets).

The hash function in the figure computes the sum of the digits of the account

number modulo 7. The hash index has seven buckets, each of size2 (realistic

indices would, of course, have much larger bucket sizes).One of the buckets

has three keys mapped to it, so it has an overflow bucket. In this example,

account-number is a primary key for account, so each search key has only one

associated pointer. In general, multiple pointers can be associated with each

key.

 Check Your Progress

1. Define: File Organization

2. What is meant by clustered file organization?

3. What is Heap file organization?

Data on External storage

NOTES

Self-Instructional Material
162

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

Figure 13.3 Hash index on search key account_number of account file

We use the term hash index to denote hash file structures as well as secondary

hash indices. Strictly speaking, hash indices are only secondary index

structures. A hash index is never needed as a clustering index structure, since,

if a file itself is organized by hashing, there is no need for a separate hash

index structure on it. However, since hash file organization provides the same

direct access to records that indexing provides, we pretend that a file

organized by hashing also has a clustering hash index on it.

Data Structure

Extend able hashing copes with changes in database size by splitting and

coalescing buckets as the database grows and shrinks. As a result, space

efficiency is retained. Moreover, since there organization is performed on

only one bucket at a time, the resulting performance over head is acceptably

low.

With extendable hashing, we choose a hash function h with the desirable

properties of uniformity and randomness. However, this hash function

generates values over a relatively large range-namely, b-bit binary integers. A

typical value for b is 32.

We do not create a bucket for each hash value. Indeed, 232 is over 4 billion,

and that many buckets is unreasonable for all but the largest databases.

Instead, we create bucket son demand, as records are inserted into the file. We

do not use the entire b bits of the hash value initially. At any point, we use I

bits, where 0 < ? < b. These I bits are used as an offset into an additional table

of bucket addresses. The value of I grows and shrinks with the size of the

database.

The I appearing above the bucket address table in the figure indicates that I

bits of the hash value h(K) are required to determine the correct bucket for K.

 Data on External Storage
NOTES

 Self-Instructional Material
 163

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

This number will, of course, change as the file grows. Although I bits are

required to find the correct entry in the bucket address table, several

consecutive table entries may point to the same bucket. All such entries will

have a common hash prefix, but the length of this prefix may be less than l.

Therefore, we associate with each bucket an integer giving the length of the

common hash prefix.

Figure 13.4 General extendable hash structure

13.7 Tree Base Indexing

B+ Tree Index Files

The main disadvantage of the index-sequential file organization is that

performance degrades as the file grows, both for index lookups and for

sequential scans through the data. Although this degradation can be remedied

by reorganization of the file, frequent reorganizations are undesirable.

The B
+
 -tree index structure is the most widely used of several index

structures that maintain their efficiency despite insertion and deletion of data.

A B
+
 -tree index takes the form of a balanced tree in which every path from

the root of the tree to a

P1 K1 P2 … Pn-1 Kn-1 Pn

Typical node of a B
+

-tree

leaf of the tree is of the same length. Each non leaf node in the tree has

between [n/2] and n children, where r is fixed for a particular tree.

We shall see that the B+-tree structure imposes performance overhead on

insertion and deletion, and adds space overhead. The overhead is acceptable

even for frequently modified files, since the cost of file reorganization is

avoided. Furthermore, since nodes may be as much as half empty (if they have

the minimum number of children), there is some wasted space. This space

Data on External storage

NOTES

Self-Instructional Material
164

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

overhead, too, is acceptable given the performance benefits of the B+-tree

structure.

13.8 Comparison of File Organization and Indexes

There are various methods of file organizations. These methods may be

efficient for certain types of access/selection meanwhile it will turn inefficient

for other selections. Hence it is up to the programmer to decide the best suited

file organization method depending on his requirement.

Some of the file organizations are

1. Sequential File Organization

2. Heap File Organization

3. Hash/Direct File Organization

4. Indexed Sequential Access Method

5. B+ Tree File Organization

6. Cluster File Organization

 Sequential
Heap/

Direct
Hash ISAM B+ tree Cluster

Method

of

storing

Stored as

they come

or sorted as

they come

Stored at

the end of

the file.

But the

address in

the

memory is

random.

Stored at

the hash

address

generated

Address

index is

appended

to the

record

Stored in

a tree like

structure

Frequently

joined

tables are

clubbed

into one

file based

on cluster

key

Types

Pile file

and sorted

file

Method

Static and

dynamic

hashing

Dense,

Sparse,

multilevel

indexing

Indexed

and Hash

Design
Simple

Design
Simplest Medium Complex Complex Simple

Storage

Cost

Cheap

(magnetic

tapes)

Cheap Medium Costlier Costlier Medium

13.9 Answers to Check Your Progress Questions

1. File Organization refers to the logical relationships among various records

that constitute the file, particularly with respect to the means of

identification and access to any specific record.

2. A file is organized so that the ordering of data records is the same as or

close to the ordering of data entries in some index. Then that index is

called clustered

3. In heap file organization, the records are inserted at the file's end. When

the records are inserted, it doesn't require the sorting and ordering of

records.

 Data on External Storage
NOTES

 Self-Instructional Material
 165

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

o

13.10 Summary

• A file is organized logically as a sequence of records.

• Based on a sorted ordering of the values are the ordered indicies

• Based on a uniform distribution of the values are the hast indicies

• A file may have several indices, on different search keys.

• Indices whose search key specifies an order different from the

sequential order of the file are called nonclustering indices, or

secondary indices.

• A clustering index on the search key, are called index-sequential

files.

• Secondary indices improve the performance of queries that use keys

other than the search key of the clustering index.

• Hashing can be used not only for file organization, but also for index-

structure creation.

13.11 Key Words

• The File is a collection of records. Using the primary key, we can

access the records.

• Records are stored in sequential order, according to the value of a

search key of each record.

• Ordered indices, Based on a sorted ordering of the values.

• Secondary indices must be dense, with an index entry for every

search-key value, and a pointer to every record in the file.

• Hashing can be used not only for file organization, but also for index-

structure creation.

13.12 Self-Assessment Questions and Exercises

Short Answer Questions:

1. What is called Indexing?

2. Define: Primary & Secondary Indexes.

3. What is meant by tree base indexing?

4. What is the index data structure?

Long Answer Questions:

1. Describe the Organization of Records in Files

2. Write short notes on

a. Clustering Indexes

b. Primary Indexes

c. Secondary Indexes

3. Describe the comparision of file organizations

13.13 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011

Performance Tuning

NOTES

Self-Instructional Material
166

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

UNIT XIV PERFORMANCE TUNING

Structure

14.1 Introduction

14.2 Objectives

14.3 Intuitions for tree Indexes

14.4 Indexed Sequential Access Methods (ISAM)

14.5 A Dynamic Index Structure

14.6 Answers to Check Your Progress Questions

14.7 Summary

14.8 Key Words

14.9 Self-Assessment Questions and Exercises

14.10 Further Readings

14.1 Introduction

Database tuning describes a group of activities used to optimize and

homogenize the performance of a database. It usually overlaps with query

tuning, but refers to design of the database files, selection of the database

management system (DBMS) application, and configuration of the database's

environment (operating system, CPU, etc.). Database tuning aims to maximize

use of system resources to perform work as efficiently and rapidly. Most

systems are designed to manage their use of system resources, but there is still

much room to improve their efficiency by customizing their settings and

configuration for the database and the DBMS. Indexing is a data structure

technique to efficiently retrieve records from the database files based on some

attributes on which the indexing has been done. Indexing in database systems

is similar to what we see in books.

14.2 Objectives

This chapter helps to understand:

 Tree indexing

 Indexed Sequential Access Methods

 Dynamic index structure

14.3 Intuitions for tree Indexes

Index structure:

Indexes can be created using some database columns.

 Performance Tuning

NOTES

 Self-Instructional Material
 167

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Figure 14.1 Structure of Index

 The first column of the database is the search key that contains a copy

of the primary key or candidate key of the table. The values of the

primary key are stored in sorted order so that the corresponding data

can be accessed easily.

 The second column of the database is the data reference. It contains a

set of pointers holding the address of the disk block where the value

of the particular key can be found.

Figure 14.2 Indexing Methods

Ordered indices

The indices are usually sorted to make searching faster. The indices which are

sorted are known as ordered indices.

Example: Suppose we have an employee table with thousands of record and

each of which is 10 bytes long. If their IDs start with 1, 2, 3....and so on and

we have to search student with ID-543.

 In the case of a database with no index, we have to search the disk

block from starting till it reaches 543. The DBMS will read the record

after reading 543*10=5430 bytes.

 In the case of an index, we will search using indexes and the DBMS

will read the record after reading 542*2= 1084 bytes which are very

less compared to the previous case.

Primary Index

 If the index is created on the basis of the primary key of the table,

then it is known as primary indexing. These primary keys are unique

to each record and contain 1:1 relation between the records.

 As primary keys are stored in sorted order, the performance of the

searching operation is quite efficient.

 The primary index can be classified into two types: Dense index and

Sparse index.

Performance Tuning

NOTES

Self-Instructional Material
168

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Dense index

 The dense index contains an index record for every search key value

in the data file. It makes searching faster.

 In this, the number of records in the index table is same as the number

of records in the main table.

 It needs more space to store index record itself. The index records

have the search key and a pointer to the actual record on the disk.

Sparse index

 In the data file, index record appears only for a few items. Each item

points to a block.

 In this, instead of pointing to each record in the main table, the index

points to the records in the main table in a gap.

Clustering Index

 A clustered index can be defined as an ordered data file. Sometimes

the index is created on non-primary key columns which may not be

unique for each record.

 In this case, to identify the record faster, we will group two or more

columns to get the unique value and create index out of them. This

method is called a clustering index.

 The records which have similar characteristics are grouped, and

indexes are created for these group.

Example: suppose a company contains several employees in each department.

Suppose we use a clustering index, where all employees which belong to the

same Dept_ID are considered within a single cluster, and index pointers point

to the cluster as a whole. Here Dept_Id is a non-unique key.

 Performance Tuning

NOTES

 Self-Instructional Material
 169

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

The previous schema is little confusing because one disk block is shared by

records which belong to the different cluster. If we use separate disk block for

separate clusters, then it is called better technique.

Performance Tuning

NOTES

Self-Instructional Material
170

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

Secondary Index

In the sparse indexing, as the size of the table grows, the size of mapping also

grows. These mappings are usually kept in the primary memory so that

address fetch should be faster. Then the secondary memory searches the

actual data based on the address got from mapping. If the mapping size grows

then fetching the address itself becomes slower. In this case, the sparse index

will not be efficient. To overcome this problem, secondary indexing is

introduced.

In secondary indexing, to reduce the size of mapping, another level of

indexing is introduced. In this method, the huge range for the columns is

selected initially so that the mapping size of the first level becomes small.

Then each range is further divided into smaller ranges. The mapping of the

first level is stored in the primary memory, so that address fetch is faster. The

mapping of the second level and actual data are stored in the secondary

memory (hard disk).

For example:

 If you want to find the record of roll 111 in the diagram, then it will

search the highest entry which is smaller than or equal to 111 in the

first level index. It will get 100 at this level.

 Then in the second index level, again it does max (111) <= 111 and

gets 110. Now using the address 110, it goes to the data block and

starts searching each record till it gets 111.

 This is how a search is performed in this method. Inserting, updating

or deleting is also done in the same manner.

Check Your Progress

1. Define: Ordered Indices.

2. What is called as Dense index?

 Performance Tuning

NOTES

 Self-Instructional Material
 171

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

14.4 Indexed Sequential Access Methods (ISAM)

ISAM method is an advanced sequential file organization. In this method,

records are stored in the file using the primary key. An index value is

generated for each primary key and mapped with the record. This index

contains the address of the record in the file.

If any record has to be retrieved based on its index value, then the address of

the data block is fetched and the record is retrieved from the memory.

Pros of ISAM:

• In this method, each record has the address of its data block,

searching a record in a huge database is quick and easy.

• This method supports range retrieval and partial retrieval of records.

Since the index is based on the primary key values, we can retrieve

the data for the given range of value. In the same way, the partial

value can also be easily searched, i.e., the student name starting with

'JA' can be easily searched.

Cons of ISAM

• This method requires extra space in the disk to store the index value.

• When the new records are inserted, then these files have to be

reconstructed to maintain the sequence.

• When the record is deleted, then the space used by it needs to be

released. Otherwise, the performance of the database will slow down.

Performance Tuning

NOTES

Self-Instructional Material
172

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

14.5 B+ Trees: A Dynamic Index Structure

B+ tree eliminates the above drawback by storing data pointers only at the leaf

nodes of the tree. Thus, the structure of leaf nodes of a B+ tree is quite

different from the structure of internal nodes of the B+ tree. It may be noted

here that, since data pointers are present only at the leaf nodes, the leaf nodes

must necessarily store all the key values along with their corresponding data

pointers to the disk file block, in order to access them. Moreover, the leaf

nodes are linked to provide ordered access to the records. The leaf nodes,

therefore form the first level of index, with the internal nodes forming the

other levels of a multilevel index. Some of the key values of the leaf nodes

also appear in the internal nodes, to simply act as a medium to control the

searching of a record.

From the above discussion it is apparent that a B+ tree, unlike a B-tree has

two orders, ‘a’ and ‘b’, one for the internal nodes and the other for the

external (or leaf) nodes.

The structure of the internal nodes of a B+ tree of order ‘a’ is as follows:

1. Each internal node is of the form : <P1, K1, P2, K2, ….., Pc-1, Kc-1, Pc>

where c <= a and each Pi is a tree pointer (i.e points to another

node of the tree) and, each Ki is a key value (see diagram-I for

reference).

2. Every internal node has : K1 < K2 < …. < Kc-1

3. For each search field values ‘X’ in the sub-tree pointed at by Pi, the

following condition holds : Ki-1 < X <= Ki, for 1 < i < c and,

Ki-1 < X, for i = c (See diagram I for reference)

4. Each internal nodes has at most ‘a’ tree pointers.

5. The root node has, at least two tree pointers, while the other internal

nodes have at least \ceil(a/2) tree pointers each.

6. If any internal node has ‘c’ pointers, c <= a, then it has 'c – 1' key

values.

Diagram-I

 Performance Tuning

NOTES

 Self-Instructional Material
 173

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

The structure of the leaf nodes of a B+ tree of order ‘b’ is as follows:

1. Each leaf node is of the form :

<<K1, D1>, <K2, D2>, ….., <Kc-1, Dc-1>, Pnext>

where c <= b and each Di is a data pointer (i.e points to actual

record in the disk whose key value is Ki or to a disk file block

containing that record) and, each Ki is a key value and, Pnext points

to next leaf node in the B+ tree (see diagram II for reference).

2. Every leaf node has : K1 < K2 < …. < Kc-1, c <= b

3. Each leaf node has at least \ceil(b/2) values.

4. All leaf nodes are at same level.

5.

Diagram-II

Using the Pnext pointer it is viable to traverse all the leaf nodes, just like a

linked list, thereby achieving ordered access to the records stored in the disk.

A Diagram of B+ Tree –

14.6 Answers to Check Your Progress Questions

1. The indices are usually sorted to make searching faster. The indices

which are sorted are known as ordered indices.

2. The dense index contains an index record for every search key value in

the data file. It makes searching faster.

Performance Tuning

NOTES

Self-Instructional Material
174

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

14.7 Summary

• Indexes can be created using some database columns.

• The indices are usually sorted to make searching faster. The indices

which are sorted are known as ordered indices.

• In secondary indexing, to reduce the size of mapping, another level of

indexing is introduced. In this method, the huge range for the columns

is selected initially so that the mapping size of the first level becomes

small.

• ISAM method is an advanced sequential file organization. In this

method, records are stored in the file using the primary key.

• A B-tree has two orders, ‘a’ and ‘b’, one for the internal nodes and the

other for the external (or leaf) nodes.

14.8 Key Words

• The index is created on the basis of the primary key of the table, then

it is known as primary indexing.

• The dense index contains an index record for every search key value

in the data file. It makes searching faster.

• A clustered index can be defined as an ordered data file.

• Secondary indexing is used to reduce the size of mapping

• An index value is generated for each primary key and mapped with

the record in the ISAM method.

14.9 Self-Assessment Questions and Exercises

Short Answer Questions:

1. Define: Index

2. What are ordered indices?

3. What is called as secondary index?

4. What is meant by ISAM?

Long Answer Questions:

1. Describe the various indexing methods

2. Explain the advantages and disadvantages of ISAM?

3. Describe the concept of B+ Tree structure.

14.10 Further Readings

• Raghurama Krishnan, Johannes Gehrke, Data base Management

Systems, 3rd Edition, TATA McGrawHill.2003.

• Silberschatz, Korth, Data base System Concepts, 6th Edition, Tata

McGraw Hill, 2011

 Performance Tuning

NOTES

 Self-Instructional Material
 175

[

T

y

p

e

t

h

e

s

i

d

e

b

a

r

c

o

n

t

e

n

t

.

A

s

i

d

e

b

a

r

i

s

a

s

t

a

n

d

a

l

MODEL QUESTION PAPER

DISTANCE EDUCATION

BACHELOR OF COMPUTER APPLICATIONS (B.C.A) EXAMINATION

RELATIONAL DATABASE MANAGEMENT SYSTEM

Second Year - Third Semester

(CBCS – 2018-19 Academic Year Onwards)

Time : 3 hours Max Marks :75

PART - A (10 x 2=20 Marks)

Answer all questions.

1. Define: Data

2. What are the operations to be done with DML?

3. What is an entity?

4. What is Selection operation with respect to relational algebra?

5. State the syntax to create a table.

6. Define: Transitive dependency.

7. Define: Transaction.

8. What is meant by remote backup system?

9. Define: cluster index.

10. What are ordered indices?

PART - B (5 x 5 Marks = 25 Marks)

Answer all questions choosing either (a) or (b)

11.a). Discuss the levels of abstraction?

OR

11. b). State the characteristics of the Database users.

12.a). What are the integrity constraints? Explain the same.

OR

12. b). Write a note on TRC.

13.a). Write a note on nested queries.

OR

13. b). Discuss about lossless join decomposition.

14.a). Explain the properties of Transaction.

OR

14. b). Write a note on log based recovery techniques.

15.a). Explain the characteristics of various indexes.

OR

15. b). Write a note on B+ tree indexes.

Part – C (3 x 10 = 30 Marks)

Answer any three questions.

16. Describe the architecture of Database System

17. Explain the various relational algebraic operations.

18. Elaborate on various Normal Forms.

19. Explain the working of Lock-based protocols.

20. Describe about ISAM.
